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Abstract

The manifold of pure quantum states can be regarded as a complex projective space endowed
with the unitary-invariant Fubini—Study metric. According to the principles of geometric quantum
mechanics, the physical characteristics of a given quantum system can be represented by geometrical
features that are preferentially identified in this complex manifold. Here we construct a number of
examples of such features as they arise in the state spaces férspin 1, spir% and spin 2 systems,
and for pairs of spir% systems. A study is then undertaken on the geometry of entangled states. A
locally invariant measure is assigned to the degree of entanglement of a given state for a general
multi-particle system, and the properties of this measure are analysed for the entangled states of a
pair of spin% particles. With the specification of a quantum Hamiltonian, the resulting Schrédinger
trajectories induce an isometry of the Fubini—Study manifold, and hence also an isometry of each of
the energy surfaces generated by level values of the expectation of the Hamiltonian. For a generic
guantum evolution, the corresponding Killing trajectory is quasiergodic on a toroidal subspace of the
energy surface through the initial state. When a dynamical trajectory is lifted orthogonally to Hilbert
space, it induces a geometric phase shift on the wave function. The uncertainty of an observable
in a given state is the length of the gradient vector of the level surface of the expectation of the
observable in that state, a fact that allows us to calculate higher order corrections to the Heisenberg
relations. A general mixed state is determined by a probability density function on the state space,
for which the associated first moment is the density matrix. The advantage of a general state is in its
applicability in various attempts to go beyond the standard quantum theory, some of which admit
a natural phase-space characterisation. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The line of investigation which we refer to as ‘Geometric Quantum Mechanics’ was in-
spired in part by the work of Kibble [55,56], who, in aremarkable set of papers, showed how
guantum theory could be formulated in the language of Hamiltonian phase-space dynam-
ics. Previously it was generally believed by physicists that it was dialgsicalmechanics
that exhibited a natural Hamiltonian phase-space structure, to which one had to apply a
suitablequantisation proceduré produce a very different kind of structure, namely, the
complex Hilbert space of quantum mechanics together with a family of linear operators,
corresponding to physical observables. However, with the development of geometric quan-
tum mechanics it has become difficult to sustain this point of view, and quantum theory has
come to be recognised more as a self-contained entity.

A notable attempt to codify the quantisation procedure in a rigourous mathematical
framework was pursued in thgeometric quantisation programf Kostant, Souriau and
others (see, e.g., [99], and references cited therein). Geometric quantum mechanics, how-
ever, is not concerned with the quantisation procedure, as such, but accepts quantum theory
as given. Indeed, from a modern perspective the nature of the problem has to some ex-
tent been reversed, and the main objective now is to understand better how the classical
world emerges from quantum theory. Thus, in contrast to the aforementioned ‘geometric
guantisation’ program, what we really need might be more appropriately called a ‘geometric
classicalisation’ program.

To this extent, there may even be grounds for arguing that the notion of quantisation is
superfluous. Present thinking on these issues is based on a special relationship between
classical and quantum mechanics distinct from the quantisation idea. The key point is
that quantum theory possesses an intrinsic mathematical structure equivalent to that of
Hamiltonian phase-space dynamics, only the underlying phase space is not that of classical
mechanics, but rather the quantum mechanical state space itself, i.e., what we call the ‘space
of pure states’.

The approach to quantum mechanics achieved via its natural phase-space geometry offers
insights into many of the more enigmatic aspects of the theory: linear superposition of states,
guantum entanglement, quantum probability, uncertainty relations, geometric phases, and
the collapse of the wave function. One of the goals of this paper is to illustrate in geometrical
terms the interplay between these aspects of quantum theory.

The plan of the paper is as follows. In Sections 2—4, we introduce a projective geometric
framework for quantum mechanics, and review the main features of the quantum phase
space. In Section 5, the phase space of a spin 1 system is studied, and in Section 6, we look
ata spin% system, relating the properties of this system to the geometry of the twisted cubic
curve inCP2. In Section 7, we examine the state space of a spin 2 system, which can be
characterised by the specification of a self-conjugate rational quartic cuBR*in

In Section 8, we develop a geometric theory of entangled states and discuss the properties
of quantum measurements made on such systems, a topic currently of great interest in
guantum physics. This theory is extended in Sections 9 and 10, where we introduce a
locally invariant geometric measure of entanglement, and explore its applications.
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In Sections 11-14, we consider quantum dynamics from a geometric point of view, and
demonstrate in particular a quasiergodic property satisfied by the Schrodinger trajectories.
We carry out an analysis of the energy surfaces in which the Schrédinger trajectories are
confined. We also show that the theory of the geometric phase has a natural characterisation
in the present setting, allowing us to introduce a quantum mechanical analogue of the
Poincare integral invariant.

Thenin Section 15, we examine the status of mixed states in the geometric framework, and
discuss the properties of general states characterised by density functions on the quantum
phase space. The entropy associated with a general quantum state is shown to be preserved,
even under nonlinear dynamics of the Kibble—Weinberg type.

The study of the geometry of the state space of quantum theory has had a rich and
lengthy history, including, e.g., the important investigations of von Neumann [94] and
Segal [82]. We mention also the influential work of Mielnik [61-63] and Chernoff and
Marsden [31]. In addition to Kibble and his collaborators, many other authors (see, e.g.,
[1,3-5,8,10-12,17-30,32-35,40,42—-44,48,51,52,60,77,81,89-93]) have contributed to the
development of geometric quantum mechanics, and in doing so have demonstrated that this
methodology not only provides new insights into the workings of the quantum world as we
presently understand it, but also acts as a base from which extensions of standard quantum
theory can be developed, some of which we shall touch upon briefly towards the end of this
paper, in Section 16.

2. Projective state space

Let us begin by reviewing briefly how quantum mechanics is ordinarily formulated. A
physical system is represented by a wave funcfigx, #), which for each time belongs to
a complex Hilbert spacgl. We also require a set of linear operatorsfncorresponding
to observables. The wave function characterises the ‘state’ of the system at timtae
case of a single particle of mamsmoving in Euclidean three-spaé under the influence
of a potentiakp (x), the evolution of the system is given by Schrédinger’s wave equation

ind (xz)—(ivz X)) ¥(x, 1)

Given an initial conditiony (x, 0), the Schrodinger equation determines the development

of the state, in terms of which we can then calculate the expectation of any observable.
Physical properties of the system depend on the wave function only up to an overall

complex factor. Suppose, for instance, we consider an observation to determine whether

the particle lies in a regio® in R3. We define the linear operat@lp, the characteristic

functionfor D, by the propertyxpy (X) = ¥ (x) for x € D andxpy¥(x) = 0 forx ¢ D.

Thusxp ‘truncates’ the wave function outside. In particular,xp has two eigenvalues,

1 and 0, corresponding to eigenfunctions concentrated and on the complement @

in R3. The probability of an affirmative result for a measurement to determine whether the

particle lies inD is given by the expectation of the operajgy, i.e.,



22 D.C. Brody, L.P. Hughston/Journal of Geometry and Physics 38 (2001) 19-53

o1 Jre¥ 0T (0 dx
E[Xp] = = et
Jra¥ 0¥ (X) d3x
In this case, we note that the probability density function
Y OOY ()
X e R
PO = T 00v (0 dx

onR3is independent of the phase and scale6f). In other words, the state of the system
is not given byyr (x) itself, but rather by an equivalence class modulo transformations of
the form

VX, 1) = AP (X, 1)

for any nonvanishing complex time-dependent functiti). For this reason, we say the
state is given, at any time, by a ‘ray’ through the originfin The space of such rays is
called projective Hilbert space, denotd{. Most of the standard operations of quantum
mechanics can be referred® directly, without consideration d¥ itself. For example,
the Schrddinger equation is not invariant under a change of phase and scaléxjor
whereas th@rojectiveSchrddinger equation

Y (X) Ay (y)
ar v ot

1
} = =5 [V ) — Y OVZY ()]
+o ) = sWIY )Y (Y)

in [W(y)

is, in fact, invariant under such transformations, as one can easily verify. Had Schrédinger
elected to present this relation as his wave equation, none of the physical consequences
would have differed.

3. Pure states

There is a beautiful geometry associated with the projective Hilbert spatwhich is
so compelling in its richness that, in our opinion, all physicists should become acquainted
with it. The basic idea can be sketched as follows. For simplicity we use an index notation
for the Hilbert spacéH. Instead ofyr (x) we write v, where the Greek index labels
components of the Hilbert-space vector with respect to a basis. This notation serves us
equally well whethef is finite- or infinite-dimensional (cf. [69,70]). The highly effective
use of the index notation for Hilbert space was popularised by Geroch [41]. For the complex
conjugate ofy® we write /.. The ‘downstairs’ index reminds us tha, is a ‘bra’ vector,

i.e., it belongs to the dual of the vector space to whi¢hbelongs.

The usual inner product betweefr? and i, can be writtermy,y*, with an implied
summation over the repeated index. In the case of a wave function, this is equivalent to
Jrs¥ 0¥ (x) d®x, whichin the Dirac bra—ket notation(g | ). By use of the index notation
the Schrodinger equation can be represented in the compactfariti = ngﬁ, where
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PH |

Fig. 1.Hermitian correspondencé pure guantum mechanical state corresponds to a ray through the @rigin
complex Hilbert spac@é{. Such aray is given by a Hilbert space vedtr specified up to proportionality, which
can also be used as a set of ‘homogeneous coordinates’ for a point in the projective Hilbe® shaldee states
¥* orthogonal te® constitute a projective hyperplane H, with the equatior, v = 0. This hyperplane
corresponds to a poit, in the dual projective spad@ H*.

Hg is the Hamiltonian operatod®; = d/d¢, and for the projective Schrédinger equation we

have
inyla P = ylenlyr,

where the skew brackets indicate antisymmetrisation.

A Hilbert space vectog® can also represent homogeneous coordinates for the corre-
sponding pointin the projective Hilbert spgBeéf. This is valid when we consider relations
homogeneous ig*, for which the scale is irrelevant. For example, the complex conjugate
£, Of a‘point’ in P H can be represented by the linear subspace (hyperplane) of géints
in PH satisfyingé,v* = 0. The set of all such hyperplanes constitutes the dual space
P H*. The points ofP H* correspond to hyperplanes# . Conversely, the points G H
correspond to hyperplanesH *, as indicated in Fig. 1.

One of the advantages of the use of projective geometry in the present context is that
it allows us to represent states (points) and dual states (hyperplanes) as geometrical ob-
jects coexisting in the same sp&a@éf. The complex conjugation operation, in particular,
determines &lermitian correspondendeetween points and their conjugate hyperplanes.

4. Superposition of states

The join of two distinct point§® andn® in P H is a complex projective line, represented
by points inP H of the form

Yo = A + B,
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Fig. 2. Transition probability The join of two stateg® andn“ in projective Hilbert spac® H is a complex
projective lineCPL: L®f = gleyfl. The points onL*# represent superpositions 8 and;®. Such a line is
intrinsically a real 2-manifold with spherical topology. The conjugate hyperplanesd i, intersectL®f at
pointsE® and7® in PH. The angle determined by the cross-ratio é68/2) = £%7j,n"Es /67, 1’75 induces
a metrical geometry ofi2, for which is the usual angular distance, afdlis antipodal tos®.

where A and B are complex numbers, not both zero. A neat way of characterising this
line is in terms of the tensat®® = gl*yfl. Physically,L*# represents the system of all
possible quantum mechanical superpositions of the stdtesmdn*. Consider, e.g., the
finite-dimensional case whefeH = CP", then-dimensional complex projective space.
Then, because of the skew-symmetry 6f it has%n(n + 1) complex components, which
can be viewed as the line coordinates of the given line. The fundamental property of these
line coordinates is that their ratios are independent of the choice of the two ptiatyd
n“, in such a way that all points on the given line are treated on an equal footing.

The simplest situation in which a probabilistic idea arises in quantum theory is also the
simplest situation in which the concept of the ‘distance’ between two states arises. The
transition probability for the staté&s’ andn® determines an angteas follows:

cos <€> = %.
2 gyéy 775 ns
Clearly,6 is independent of the scale and phasg®éndn®. This angle defines a distance
between the states andn® in PH, as illustrated in Fig. 2. If the states coincide, then
6 = 0; for orthogonal states we have= 7, the maximum distance.
Suppose we sét= ds andé® = ¢, n* = ¢¥* + dy*. By use of the expression for the
transition probability, expanded to second order, we find that the infinitesimal distance d
between two neighbouring states is

42— 8 [‘”[a dy 19 dirgy }

Wy yr)?
an expression known to geometers as the Fubini—Study metric [9,58]. This metric is well
defined both in finite and infinite dimensions (see, e.g., [60]). The introduction of the
Fubini—Study metric illustrates how the notions of probability and distance become inter-
linked, once quantum theory is formulated in a geometric mannerg&bdesic distance



D.C. Brody, L.P. Hughston/Journal of Geometry and Physics 38 (2001) 19-53 25

with respect to the Fubini—Study metric determines the transition probability between two
states. Indeed, the nontrivial metrical geometry of the Fubini—Study manifold is responsi-
ble for the ‘peculiarities’ of the quantum world, and in what follows we shall see various
examples of this phenomenon.

5. Spin measurements

The specification of a physical system implies further geometrical structure on the state
space. The point of view we suggest is thiitthe relevant physical details of a quantum
system can be represented by additional projective geometrical features. Here and in sub-
sequent sections we shall illustrate this point with several examples. Let us first consider
the spin degrees of freedom of a nonrelativistic spin 1 particle, as represented by a sym-
metric spino”B (A, B = 0, 1). The relevant Hilbert space has three dimensions, and we
denote the corresponding projective Hilbert sp@&8. A symmetric spinor has a natural
decompositiop”B = o4 gB) wherea” andp are called ‘principal spinors’, and round
brackets denote symmetrisation. There is a special dgniorresponding to degenerate
spinors of the formp”8 = y 4y 8 for some repeated principal spinpr*.

The identification ofC is sufficient to induce the structure of a spin 1 system on the
state space, since through any generic poir@i8 there are two lines tangent & and
the corresponding tangent points determine the principal spinors, up to scale, as shown in
Fig. 3. Alternatively, we can think of a con&in CP? being represented by a map (see,
e.g., [83]) fromCP! to CP? such that if(z, u) are homogeneous coordinates©R!, we
have the Veronese embedding

C: (t,u) > (1%, tu, u?),

2
CpP ) AB_ d/\“ B)

AB_ B(AV B)

Fig. 3.Spin1 particle. A symmetric spinog”® has three independent components which act as homogeneous
coordinates foiCP2. The image of the mag : CP! — CP?, defined by{y* € CP} — {y4y 58 e CP?}
determines a curvé in CP2. The tangent t@ at the poinp”B = «*«® in CP? consists of spinors of the form

¢"B = o4 u® for someu”. The intersection of the lines tangent to the poimts:® and 84 8% is the point
8B, Conversely, once a conitis specified, a mag " is established fronCP? to point-pairs inCP, called
principal spinors. The points ahmap to degenerate point-pairs.
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where (2, tu, u?) now represent homogeneous coordinate<C6A. Because a complex
projective line, in real terms, represents a sph#résee Fig. 2), the specification of the
spin direction inR3 determines a point o082, and hence od.

For quantum mechanics the conic is required to be compatible with the complex conju-
gation operation on the state space in the sense that if we conjugate a pojthenh the
resulting line is tangent t6. If in algebraic terms the conic is given kfmé“gﬁ =0, then
we requireC®? = C*#, whereC*? andC®? are, respectively, the inverse and the complex
conjugate 0iC,g. The complex conjugai@ag = @4 By of a general state corresponds to
a complex projective line consisting of states of the fata*a® + QB4 B8 for arbitrary
complexP and Q (not both vanishing). Here we defiae' = ¢"Bap andf* = "Bgp,
with €”B the natural symplectic structure. The rules for the complex conjugatiorcroap
spinors are given, more explicitly, y(a?) = a4 andc(@?) = —ay4. The latter identity
arises since(a@?) = c(e”Bag) = eapa® = —a4.

Recall in this connection that for any spinpf we have the relationg® = B¢ and
¢A€AB = ¢p, and thateap satisfiescag = —epa andeas = €ap. If we take the complex
conjugate of a state ofy, the resulting line is tangent to the conic at a point, which we
call the conjugate of the original point @¢h This establishes a Hermitian correspondence
between pairs of points ah For a state”B = 4y ? the conjugate line consists of states
of the formA 4y B) for arbitraryr4. This line touches the coniat the point4 5.

Each choice of a point o6, as noted above, determines a spin axis. For any spin axis
there are three possible spin states, with eigenvalued And 0. The spin eigenstates are
the pointsy4y 8 andy 4y 2 onC, having the eigenvalues 1 and., together with a third
point 4y obtained by intersecting the lines tangent to the cchat the other two
points, corresponding to eigenvalue 0, as indicated in Fig. 4.

When a spin measurement is made, the initial state corresponds to a generi point
CP?, and the measurement is defined by a spin axis. The state then ‘jumps’ from its initial
point to one of the three spin eigenstates associated with the choice of axis. Quantum theory,
as such, states nothing about the ‘mechanism’ whereby this jump is achieved.

cp?

Fig. 4. Spin measurementhe state space of a spin 1 system has a conjugation relation that associates to each
pointy 4y 8 on the special conic a conjugate pojnt ¢ £ . The antipodal pointg# andy4 on the corresponding
2-sphere select a direction in Euclidean 3-space. The three poini€, A ¢ 8 andy Ay 5 are eigenstates of

the spin operato§, associated with this axis. The corresponding geodesic distanoes;, fp to a generic state

X e CP? determine the probabilities of the measurement outcome$ ffar a particle in the initial staté.
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We can, however, compute the probabilities, and describe the result in geometrical terms.
First we calculate the distance frokhto each of the three spin eigenstates, by use of the
Fubini—Study metric. This gives us three angle®_1, andfp. For each angle we compute
P©) = %(1 + cosh), which gives us the probability of transition to that particular state.

It is not obvious that the three probabilities computed in this way sum up to 1, given any
initial state in which the measurement is performed, but they do: this is a ‘miracle’ of the
Fubini—Study geometry.

6. Spin% and the twisted cubic curve

We have seen that in the case of a projective plane, there is a@Gordcresponding to
degenerate spinors obtained by a special map from a projective line to a plane. On the other
hand, in three-dimensional projective sp&zfe® there are two different kinds of locus to
be considered, each of which is in some respects a proper analogue of the conic, hamely,
the quadric surfac® and the twisted cubic curvg. While a surface is the locus of a
variable point of space which has two complex degrees of freedom, a curve is the locus of a
variable point of space of one complex degree of freedom. When viewed as the state space
of a quantum mechanical system, the quadric surfa@Picharacterises the disentangled
states of a pair of spié particles, the geometry of which we shall study in some detail in
Sections 8-10.

The twisted cubic, the simplest nonplanar curve in projective geometry, on the other hand,
plays an essential role in the geometry of the state space of %smjmticle. Analogous
to the conic curve, the twisted cubic can be represented by a mapdrto CP® of the
form

T :(t,u) —> (t3, 2u, 12, u3),

where(r3, r2u, tu, u3) represents the homogeneous coordinates of a poifff snCPS.
It follows that 7 is an algebraic space of the third degree, which meets a generic plane of
CP2 in three points.

In order to proceed further, we introduce a spinorial notation and let the symmetric spinor
YABC — 4 (ABO denote homogeneous coordinatesG®? [54]. Then, the twisted cubic
curve is determined by the relatiagg = 0, where

TAB = YCD(A 1/fB)CD.

As a consequence we see tffats given by the common intersection of two-dimensional
net of quadric surfaces i@P°. Here the indices oi*BC are raised and lowered according
to the standard conventions, so, eyg;® = eagy"°P. The general solution to the algebraic
relations given byrag = 0 takes the formyABC = £4£B£C for arbitrary&4. Then if we
parametrise a poirt® € CP! according to the scher#&' = (¢, u), we recover the map

7 : CPL — CP® noted above.
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The specification of a twisted cubi€ in CP® induces aull polarity on the state space,
i.e., a natural correspondence between points and planes such that the polar plane of a given
point includes that point. The null polarity is given by the map

YPBC s Yapc = eapepgecryy PR

and it follows as an elementary spinor identity tdCyagc = 0 for any choice ofyABC.
In the case of a poinyBC = £4£B£C on T, the corresponding polar plane intersefts
solely at that point, with a threefold degeneracy, and is calledsalating planet that
point.

Through a given poirg4£8£€ e T, the associated tangent line is given by points of the
form £(AgB,C)  with n# arbitrary. We say that a generic point®P3, with three distinct
principal spinors, is of typél, 1, 1}. The point that lie on tangents 10 are of type(2, 1},
whereas the points of are of type{3}. A necessary and sufficient condition for a point
to be of type{2, 1} is the vanishing of the invariat = ragr”B. Hence we see that the
tangent lines tg~ generates a quartic surfagein CPS.

For quantum mechanics the twisted cubic has to be self-conjugate in the sense that the
complex conjugate plane of any point @n has to be the osculating plane of another
point on7. The choice of a point ofi determines a spin axis. For each spin axis, there
are four possible spin eigenstates, with eigenva§ie$, —3 and —3. Two of the spin
states, corresponding to the eigenvalﬂtc%s lie onT itself. These two states can be written
YAy Py © andy Ay Py, wherey ! = Ay andyps = c(y?).

The complex conjugate of the stat'BC = Ay By C on the twisted cubid is the
planeyasc = ¥4 ¥ ¥ in CP3, and this plane osculatésat the pointy 4 2 €. Through
the pointy 4y By € there is a unique line tangent 6, and this line intersects the plane
YavpYc at the pointy Ay By . This point is the spir eigenstate with respect to that
choice of axis. Conversely, the tangent lineJiat the spin-3 statey 44 2y € intersects
the osculating plane oF aty 4y 5y € at the pointy 44 2y, which is the spin-3 state,
as illustrated in Fig. 5. That concludes our identification of the four possible spin eigenstates
that can arise with respect to a given choice of axis.

An interesting feature of the twisted cubic geometry arises from the fact that for any
symmetric spinoiy”BC we have the syzygistic relation

ABC
gy =0

’

which follows from the spinor identityiagec)p = 0. This formulaimplies that through any
pointyABCin CP® — @, i.e., a point off the quartic surface, there exists a unique chard of
This follows from the fact that, providingsg is nondegenerate, the conditiggeyAB¢ = 0
implies a relation of the form

1pABC — M%.AEBEC + U)?AT)BUC

for somet4 andn? corresponding to a pair of spin axes such that* # 0, where(u, v)
are homogeneous coordinates@B'. It follows that an arbitrary quantum stage*EC in
CP® — ® admits a unique characterisation as a superposition of a pair ogsp'genstates
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PAPYO

Cp3

Fig. 5. The twisted cubic curve as a system of spin stdtke quantum phase space for a sg)iparticle contains

a preferentially identified twisted cubif which is self-conjugate in the sense that the complex conjugate plane
corresponding to any point dh necessarily osculates the curve at some other poifft owhich we regard as
conjugate to the original point. The points Bfare those states which have an eigenstate of %p‘ieiative to
some choice of spin axis. Each pointBfcorresponds to a choice of spin axis and direction, and its conjugate
corresponds to the same axis with a reverse of direction.

corresponding to distinct spin axeszhs is degenerate, then the chord reduces to a tangent
line to 7" with a double point at the intersection, apdBC has a unique representation of
the formyABC = £(AgBy0),

7. The rational quartic curve and spin 2 systems

A similar analysis to that described in this section can also be pursued in connection
with the geometry of a spin 2 system, for which the state spa@®ts endowed with a
self-conjugate rational quartic curve. The geometry of this curve is closely related to the
Petrov classification of gravitational fields as developed in its modern form by Penrose [68]
and others. See, e.g., [71,72,76] for references and further relevant details.

In this connection we note that there are two levels of specialisation in the description of
the state space. If we takeP* with the Fubini—Study metric, but without the specification
of a self-conjugate rational quartic curve, then we have the state space appropriate for a
generic five-state system. If we taR®* with the rational quartic without the Fubini—Study
geometry, then we have the set-up appropriate for the geometry of gravitational fields,
but without bringing quantum mechanics into play. That is the situation where the Petrov
scheme arises. Finally, when we bring both the rational quartic and the Fubini—-Study metric
into the picture, we have the state space geometry for a spin 2 quantum system.

Let us consider first the case when we have a rational quartic &irv€P*, but without
consideration of the metric. For a general treatment of the properties of this curve, see, e.g.,
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4 )

y=oByd

cp4

. J

Fig. 6. The Petrov classificatiorPassing through a generic poipfBCP = (4 8, CsD) in CP* there are four
osculating solids of the rational quartic curie The points orfR where these solids touch determine the four
principal spinors. A degeneracy of tyg, 1, 1} occurs if two of the solids coincide, angd”"BCP lies on an
osculating 2-plane. When three solids coincide, we find #HfCP is of type {3, 1} and lies on a tangent line.
When all four solids coincide”BCP is of type{4} and lies orR. The type{2, 2} case arises whep”BCP is an
intersection point of a pair of osculating 2-planes.

[88]. The rational quartic is given by the Veronese embed®ngCP! — CP*, given by
R (t,u) — (4 3u, t2u?, 1, u®).
In spinor terms, a point oR is necessarily of the form

IﬁABCD — O{AOIBOlCOlD

for some choice ot e CPL. The points orR thus correspond to ‘null’ gravitational
spinors, i.e., spinors of Petrov typ4}, with a fourfold degeneracy in the principal spinors.

Associated with any point oR are three special linear spaces. These are the tangent
line, the osculating plane, and the osculating solid. The tangent line at the fixed point
a‘aBaCal e R consists of spinors of the form“aBa®pP) for some choice oB™.

The osculating plane consists of spinors of the fartthia® €2’ and for the osculating
solid we have spinors of the fored4 88y €82, Four osculating solids, corresponding to
the four principal spinors, pass through a generic poir@®f, as illustrated in Fig. 6.

The various types of degeneracies that can arise can be given an elegant characterisation
in terms of the geometry of the rational quartic curve. Here we follow a procedure very
similar to the cases described for spin 1 and s})(nf. [54,67]). The spinors of typgs, 1}
or type {4} constitute together a sextic 2-surfa®e € CP* ruled by the tangent lines of
R. A necessary and sufficient condition for a spinor to liedinis the vanishing of the
invariants

ABCD CD., EF., AB
Z = YaBcD¥ , J =vas  YcD VEF .

The spinors of typg2, 1, 1}, {3, 1}, {2, 2} and{4} constitute together a sextic primal
in CP* given by the equatiof® = 6.72. This is a necessary and sufficient condition for
¥ABCP10 lie on an osculating plane &. More generally, we note th&@tP* — 0t is foliated
by a pencil of sextic primals with bas®, given by pZ3 = ¢.J?, wherep, ¢ (not both
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vanishing) are homogeneous coordinates for a poiR#h The spinors of typg2, 2} or
{4} lie together on a two-dimensional quartic subsurf@e# the sextic prima, given by
the equation

v YoMy rkm = 0,

which can be interpreted as the common intersection locus of a six-dimensional net of cubic
primals. The surfac® is generated by intersections of pairs of osculating 2-planes.

When quantum theory is brought into the picture, we augment the operations indicated
above with the requirement that the rational quartic curve should be self-conjugate in the
sense that the complex conjugate of the polar solid of a poifR @another point orRk.

The polar solid of a general point@P* with respect taR is defined to be the solid spanned
by the tangential points of the four osculating planes through the given point.

For a point ornR, the polar solid is defined to be the osculating plane at that point. The
complex conjugate of this polar solid is a point which we call the complex conjugate of the
original point. We require that if the original point is @& then so is its complex conjugate.

The choice of a point o® determines a spin-axis, and the complex conjugate of this point
then corresponds to the same axis but with the orientation reversed. In particular, the chosen
state oriR hasS, = 2 with respect to the correspondiggxis, and the complex conjugate
states has; = —2. TheS, = 1 state obtained by intersecting the tangent line of.aa: 2

state with the osculating solid of the correspondfhg= —2 state. Thes, = —1 state is
obtained by intersecting the osculating solid of she= 2 state with the tangent line of the

S, = —2 state. Finally, the, = O state is the point obtained by intersecting the osculating
planes a5, = 2 andS, = —2 states, as illustrated in Fig. 7. We remark, incidentally, that
the S, = O states are ‘real’ in the sense thatBCP o ABCP for these points. Thus the

S. = 0 states are given by the real points of the surféce

In contrast with the spié case, where a general state can be expressed in a unique way
as a superposition of a pair 8f = % states for two choices of spin axis, it is generally not
true that a spin 2 state can be expressed as a superposition of a §ai=d? states. For
this we require thagBCP should lie on a chord oR, a necessary and sufficient condition
for which is given by the vanishing of the cubic invarignt An equivalent way of stating
thatyABCP should lie on the chordal primal = 0 is that the four principal spinors should
satisfy the harmonic condition. On the other hand, passing through a generat3t&fe
there exists a one-parameter family of trisecant planes, each of which cuts the twisted quartic
at three points, thus allowing us to expras®8CP as a sum of thres, = 2 states imo?
ways. The locus generated by the trisecant planes through a general state is a quadric cone.

8. Geometry of entanglement

Now we consider the spin degrees of freedom of an entangled pair 05 pirticles. The
generic two-particle stat¢”B for a pair of such particles (e.g., an electron and a positron)
has a four-dimensional Hilbert space, and the state sp&@’isThere is a preferred point
Z in CP3, corresponding to the singlet state of total spin 0, for whid? = (A8l The
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Fig. 7.Geometry of the rational quartic curvét a generic poinfA on the curveR we can draw the tangent line
L, which lies in the osculating 2-plarié at A, which lies in the osculating 3-soli at A. If B is another point
onR, then the tangent lin® to R at B lies in the osculating 2-plang at B, which lies in the osculating 3-solid
Q atB. The tangent t@R at A meets the osculating solid atC. The tangent t®R at B meets the osculating solid
N at D. The osculating plang/ at A intersects the osculating plafeat B at the pointE. For a spin 2 system,
the curveR is self-conjugate: the complex conjugate hyperplane to a poifit @the osculating solid of another
point on’R. The choice of a point ofR determines a spin axis. # and B are conjugate, the eigenstates of the
spin operatosS; with eigenvalues 21, 0, —1, —2 are given by the pointd, C, E, D, B, respectively.

conjugate plan& contains the triplet states of total spin 1, for whigh® = A8 we
note thatZ is endowed with a self-conjugate cordi¢each point of which defines a spin
axis. There is also a surfage € CP3, given by the quadratic equation

AB., CD
eacepy Y =0

’

consisting of states of thdisentangledorm 8 = 4558 representing an embedding of
the product of the state spaces of the individual s})iparticles. The pure states off the
guadric are thentangledstates.

Suppose we start with a combined state of total spin O for the two particles, and we
measure the spin of the first particle (say, the electron) relative to a given choice of axis.
This will disentangle the state, so the result lies@nThe choice of axis and orientation
determines a point and its conjugate on the c@nithe tangents to the conic at these points
intersect to form a third point off the quadric but in the plane of total spin 1, corresponding
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Fig. 8. Quantum entanglementhe quantum phase space of an electron—positron system contains & point

total spin 0, and a projective hyperpladdor total spin 1. The disentangled states have indefinite total spin, and
comprise a quadri© € CP? ruled by two systems (electron and positron) of linear generators. Once a spin axis
is chosen, the join of with the state of total spin 1 anf} = 0 intersectg) in a pair of points, corresponding to

the possible measurement outcomes of the spin of the electron relative to the axis.

to a triplet state of eigenvalue O relative to the axis. We join that state to the starting state
Z, and the resulting line interseafs at a pair of points, as shown in Fig. 8.

The two disentangled states thus obtained represent the possible measurement outcomes.
The quadricQ has two systems of generators, corresponding to the electron and positron
state spaces. Through each poinibthere is a unigue ‘electron generator’ and a unique
‘positron generator’. An electron generator represents a fixed electron state, each point on it
corresponding to a possible positron state. The two points constituting the possible outcomes
of the spin measurement of the electron have the property that their electron generators hit
respectively the two chosen points on the conic that define the spin axis. The measurement
result for which the electron generator hits the spin up state on the conic is the ‘electron
spin up and positron spin down’ outcome, whereas the other one is the ‘electron spin down
and positron spin up’ outcome. The argument outlined above are clearly relevant to the
formulation of a proper geometric treatment of the EPR problem, though in that situation
one must also take into account the further degrees of freedom associated with the geometry
of space—time.

Inthe case of a measurement upon a generic state, not necessarily of total spin 0, the possi-
ble resulting outcomes are constructed geometrically as follows. Without loss of generality,
we consider, in the present set-up, the measurement of the spin of the electron with respect
to a spin axis. The choice of the spin axis selects a pair of points on the coflickach
of these points determines a corresponding electron generator. The two electron generators
thus obtained do not meet. Now given a generic point and a pair of skew liG#%jithere
exists a unique line through this point that intersects the two lines transversally. The line
thus obtained necessarily intersegtat two points, and these two points determine the two
possible measurement outcomes of the electron spin with respect to that choice of axis.

In a more general situation, the idea of the quantum entanglement of a system of particles
is characterised geometrically by the fact that complex projective space admits a Segre
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embedding (cf. [42]) of the form
CP" x CP" < CPm D=1

Here we regard botlcP” and CP" as representing the state space of two subsystems,
respectively, while&CP+D+D-1 represents the state space of the combined system. One
can argue that this is the main feature of quantum mechanics that has no analogue is classical
physics. Classically, the state space of a combined system is given by the product of the
state spaces of the subsystems, which typically has much lower dimensionality than the
guantum state space of a combined system.

One should bear in mind that there are two distinct categories of order and disorder
that can enter into the characterisation of a multi-particle quantum system. One has to
do with thermalisation: the admixture of pure quantum states into a Gibbsian ensemble.
The other category of order—disorder relation is concerned with degree of entanglement.
The laws of thermodynamics must account for a general tendency towards both mixing as
well as disentanglement. The latter is in some respects more elusive, and it is not clear a
priori how to formulate a physical basis for the process of disentanglement, which does
not admit a simple description in the language of thermodynamics. One of the motivations
behind the present study is to establish a satisfactory framework for exploring this issue
further.

9. Measure of entanglement

The geometrical set-up indicated in the previous section suggests a methodology accord-
ing to which a measurg (¢/) can be assigned to tliegree of entanglemeakhibited by
a given pure statey. Let us consider, e.g., the case of a finite-dimensional two-particle
state spac&€P" containing a variety” c CP”, whereV” = CP/ x CP' andn =
(j + )k + 1) — 1. The varietyV™ represents the disentangled states of the two parti-
cles, and is given by the product of the respective single particle state spRéesnd
CP..

We propose, as a measure of entanglement for a generic purg/sta@P", the use of
thegeodesic distance from the given stat¢o the nearest disentangled staide distance
A is measured with respect to the Fubini—-Study metric.

The choice ofA is naturalinasmuch as it depends only on the Segre embedding of the
variety V" and no additional structure apart from the given metrical geomet@RSf
Furthermore A is invariant under any unitary transformation@P” that is also an auto-
morphism of V™, i.e., ‘local’ transformations that preserve the disentangled state space.
This invariance is a key property for a measure of entanglement [14,59,79,85]. Essentially
the same construction applies to the case of entangled states of any number of particles. We
do not require that the particles are necessarily of the same type.

As aniillustration, we consider in more detail the system described in Section 8 consisting
of two spin 3 particles, where the state spaceCB® and the spacé&? of disentangled
states is a quadri® c CP3. Suppose we write/”B for a generic state, angiag for the
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corresponding complex conjugate hyperplane. Then the minimal distafcen i to Q
is determined by the relation= %(1 + cosA), wherexk is the cross-ratio

_ (¥"®Xap) (X Pycp)
(¥AByap) (XPXcp)

andX”B e 0 maximises for the given statg/*B. The cross-rati@ is the Dirac transition
probability from the state/”B to the statex”B, Our goal is to find the states @hfor which
the transition probability fromyA8 is maximal, corresponding to a minimal Fubini-Study
distance.

We shall turn to the details of the maximisation problem in Section 10, but first we
present the solution and analyse its consequences. Let usygite> eacespy B and
YAB £ ACBDY g, where the antisymmetric spineg satisfiescage”© = §§. Then the
solution fork isk = 3(1+ y), with

_ \/ (¥ Byias) (¥ “Pyrcp)
y=./1-— = .
(A Byrag)?
We note thaty as thus defined is independent of the scales@f and lies in the range
0 < y < 1. The inequality satisfied by follows from a general result that for any element
zina complex vector space with a Hermitian inner product we have the Hermitian inequality
(z-2)2 > (z-2)(z- 2). This can be seen by writingy= a + ib, wherea andb are real,
and then checking that the purported relation reduces to the Schwartz ine¢mabity <
(a-a)(b - b). Furthermore, we can verify that is invariant under local transformations,
i.e., unitarity transformations of the forg?*® — UAUB P, whereU} is an element of
U (2). This follows as a consequence of the fact h&Byag — det(U)y Byag under a
local transformation where déf) = eABUé‘ UgeCD is evidently a pure phase.

If the pointy~B lies on the quadri@, we haveyagy”B = 0, and hencer = 1, which
impliesk = 1, from which it follows that the distance to the quadriiis= 0. On the other
hand, for a maximally entangled state the inequality is saturatgd-a0, and thus gives
x = 3, which impliesA = 7 /2.

The interpretation of this result is as follows. We recall that for orthogonal states the
Fubini—Study distance i8, the greatest distance possible. On the other hand, the maximum
distance an entangled state can have from the closest disentangled state, in the case of two
spin% particles, ist/2. For example, with respect to a given choice of spin axis, the spin
0 singlet state”B can be expressed as an antisymmetric superposition of two disentangled
states, i.e., an up-down state and a down-up state. The two disentangled states are mutually
orthogonal, and the singlet state lies ‘half way’ between them.

10. Maximal and sub-maximal entanglement

There is a well-known construction in algebraic geometry according to which a proper
quadric locus irCP® induces golarity on this space, a one-to-one correspondence between
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points and planes. Reverting briefly to the notation of Section 3, let us ytiter the ho-
mogeneous coordinates of a poinQRS, andQqg vy P = 0for the quadric (cf. [53]). We
assume that the quadric is nondegenerate in the sense thagget4 0. Then for any point

g% e CP3 it follows thatg, £ Qaﬁgﬁ is nonvanishing. The locus consisting of all points
¥ such tha&, v* = 0 defines thgolar planeof the points® with respect to the quadric
Qup- SinceQqg is nondegenerate, there is a unique invepgé satisfyingQq, QP = 65,

and thus for any plang, in CP® we can define a polar poifj#* £ Q“ﬁn,g. The operation

is involutory in the sense that the polar point of the polar plane of a given point is that point.

The polar plane of a poirit can be constructed as follows. LEtbe an arbitrary line
through&. ThenL intersectsQ twice at, say, pointgt and B. Now suppose we consider
the harmonic conjugatg* of &, on the lineL, with respect to the pointd and B. This is
the unique poing* on L for which we have the cross-rat{§, £*; A, B} = —1. Then, as
we varyL, the locus of* sweeps out a plane, and this is the polar pkarighe polar plane
£ intersectsQ in a conicC with the property that any line drawn frogto C touchesQ
tangentially. Conversely, if we consider all the lines throggiat touchQ tangentially,
then the union of the intersection points is the cahiwhich lies in a unique plane, the polar
planet. A point lies on its polar plane iff the point itself lies on the quadric, in which case the
polar plane of the pointis the tangent plane at that point. In that case, the€ambegenerates
into a pair of lines, given by the two generators of the quadric through the given point.

Inthe quantum mechanical situation we require further that the qu@dgibe Hermitian,
or ‘self-conjugate’, in the sense th@,s = Qs and Q*¥ = Q*. This ensures that the
complex conjugate ket-vector of the polar bra—ve@tprof a given ket-vector® agrees
with the polar ket-vector of the complex conjugate bra-vegimf the given ket-vector®.

It follows that complex conjugate ket-vector of the polar bra-vector of a disentangled state
is also disentangled, and that the polar ket-vector of the complex conjugate bra-vector of a
disentangled state is disentangled.

The geometry of a self-conjugate quadric applies to the consideration of any pair of
two-state systems, whether or not these systems are of the same type. For example, we
might consider a toy model in which a lepton is regarded as a composite consisting of a
neutral spin% particle and a spin O flavour doublet that determines whether the lepton is an
electron or a muon. Then one might explore the properties of the entangled state given by a
superposition of a spin-up electron with a spin-down muon, the spin state being given with
respect to some choice of axis. What distinguishes the state space of a pair%)papinles
is the existence of a preferred singlet stafe This state is required to be self-conjugate
polar with respect to the quadric in the sense that= Q5 Z°.

We now present a geometrical construction for the supremum of the cross-ratiter
the given constraint. Given the entangled siatewe wish to find the stat&® € Q that
maximises the cross-ratio

o WX X )
(W Ya) (XPXp)

A

Suppose we defing® £ 0* 4, the polar state of the complex conjugate hyperplane
Then we can show that the states @rthat are maximally and minimally distant to the
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Fig. 9. Construction of the nearest and furthest disentangled st@&®n any entangled state® we can form
another stat@“ given by the complex conjugate 5&, the polar conjugate plane ¢ with respect to the quadric
Q. Providing that/* is not maximally entangled, the points’ andy“ are distinct, and the points ah closest
to and furthest fromy® are given by the intersection point& andX® of Q with the line joiningy® and®.

given statey® are collinear withyy*, and are complex conjugate polar to one another in
the sense that* has to be of the form

¥ = pX* +qQ” X,

whereX? is the point onQ closest toy*, so|p| > |¢| (see Fig. 9). This can be verified,
e.g., by maximising with respect taX“ subject to the constrair@aﬂX"‘Xﬁ =0, using a
Lagrange multiplier technique. Then if we define- p/q it follows by a direct substitution
that

AA
K = =.
14 2A

Sinceax > 1, we deduce, further, th%t < k < 1. On the other hand, we can also verify
by direct substitution that the invariaptdefined by
_ (Qup¥ Y P) (O Yy s)
W2
which is independent of the scale @f,4, depends op andg only through, and is given
by the formula

)

4p

L= A2

Then it is not difficult to see that is indeed of the desired form = %(1 + y) with

vy = 4/1— p. That establishes the the validity of the expression indicated earlier for the

minimum distancer = cos 1 y from the given state¢/* to the quadric of disentanglement.
Suppose we consider the case of sub-maximally entangled states. In this situation

the relation betweey® and X* is invertible, since providinga | >1 there exist complex
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numbers- ands such that
X" =ry® + 5@y
We can solve this for the ratijo = r/s by imposing the conditiorQaﬂX"‘X/3 =0, leading

to the quadratic equation? Qs ¥ * ¥ # + 2y ¥y + Q%P = 0, for which the roots
are given by
1+ JT—¢qg

q 9

whereg £ Qus ¥y P /¥ ¥, The positive root gives the point a nearest ta/, and the
negative root gives the most distant disentangled state, as illustrated in Fig. 9. We note that
the terms here are so constructed that the solutiok fas independent of the overall scale
and phase of*, as expected.

The maximallyentangled states are those for whjah = 1, for which apart from an
overall irrelevant scale factaf® is thus necessarily of the form

I

1)//,C{ — el@x()l + e—|9 Qﬂlﬂiﬁ.

Such states are self-conjugate in the senseythat Qaﬁwﬁ. Conversely, given any dis-
entangled stat&“ we see that there exists a one-parameter family of maximally entangled
states at a distaneg/2 from it. This one-parameter family is given by the equatorial circle
of the complex projective line obtained by joinidff* to the conjugate disentangled state
0% X g, to which X¥ is orthogonal.

Thus, e.g., iftX*B = £48 is a disentangled state of two sp%wparticles, then we
obtain the one-parameter family of maximally entangled states giverf'By= €7£4y5 +
e 9EA7B whereEA £ ¢ABgp andii? £ ¢BAjj4. For any value of these states are at a
distance ofr/2 from XAB,

A special case of interest arises whgh = £8 andi4 = —&4. In that case, reverting
to the notation of the previous section, we ha#® = 7y Ay 8 — e 104y B Then for
6 = 0 we obtain the spin 0 singlet state for whighi® o« €AB; whereas fop = = we get
the S, = 0 spin 1 triplet state for whicly B oc (4, ®) (see Fig. 10).

More generally, ify¢ is anarbitrary maximally entangled state, then consider the conic
K that arises when we intersect the plahewith the quadricQ. This conic is conjugate
self-polar in the sense that for any pairft on K the complex conjugate platg, is tangent
to the quadric at a poirt* on K. Now, suppose we consider the loalisf points generated
by the intersection of the tangent lineskoat 7% andz® in the planey, as we varyr®.
For any pointP in £ the join of that point withyy* intersectsQ in a pair of pointsX* and
X*, both of which are at a distanet = /2. By varying P we obtain all points orQ at a
distancer/2 from ¢*.

11. Schrédinger evolution

As the examples above indicate, the geometry of quantum mechanics is very rich, once
specific physical systems are brought into play, even when there are only a few degrees
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Fig. 10.Maximally entangled state§he S = 0 singlet and ar$, = O triplet state for some choice efaxis are

joined by a complex projective line that interse¢tsn a pair of disentangled states. The singlet and triplet states

lie on an equatorial circle at a distancemf2 from the disentangled states which are orthogonal to one another
and thus lie on opposite poles. All the points on this equatorial circle are maximally entangled. The aft¢he
entangled triplet states corresponding to different spatial directions is topologically equivalent to a sphere with
opposite points identified, i.eRF2. The conicC on Q, which has the topology of a sphesé, is the covering

space of this locus. Hence the space of maximally entangled states thus constructed has a cone-like structure,
obtained by joining each point df to the unique singlet statg = 0, the join in each case being given by the
corresponding equatorial circle.

of freedom. This picture can be further developed by consideration of the dynamics of a
guantum system, which can be pictured as a vector field on the state manifold. Such a vector
field generates a symmetry of the Fubini—Study geometry, i.e., an action of the projective
unitary group.

In the case of ain + 1)-dimensional Hilbert space, the state spac€m8, which can
be viewed as a real manifold of dimension 2, with a symmetry group generated by a
family of n(n + 2) Killing vector fields. The generic Killing field o™ hasn + 1 fixed
points, corresponding to the eigenstates of a nondegenerate Hamiltonian.

Inthe case of atwo-dimensional Hilbert space, the state sp@&& jand the specification
of aKilling field selects out a pair of polar points 84, corresponding to energy eigenstates
Eg andE1. The relevant symmetry is then given by a rigid rotational flow about this axis,
the angular frequency being determined by Planck’s formilyla Eg = hw. For a general
state spac€P", in the generic situation, where the Hamiltonian is nondegenerate, with
n + 1 distinct eigenvalues, the+ 1 fixed points of the given Killing field are linked by a
figure consisting o%n(n +1) spheres, for which the fixed points act as polar points, in pairs.
These fixed points form the vertices of a regular simple€R1, and under the action of
the Killing flow the spheres linking these vertices rotate respectively with the characteristic
angular frequencies

E; — E; = hwjj,
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whereE; (i =0, 1, ..., n)labels the energy ath eigenstate. The dynamical trajectories in

I’ are determined by the specification of the fixed points, along with the associated angular
frequencies. Even in the case of a simple spin 1 system, the geometry of the state space is
intricate, given by a four-dimensional real manifold containing a system of three 2-spheres
touching one another at the poles, and spinning at three distinct frequencies.

If the frequencies are incommensurate, i.e., not rational multiples of each other, then the
Killing orbits do not close except on the three special spheres, and the generic dynamical
trajectory, starting from some initial point in the state space, is doomed to evolve to eter-
nity without ever returning to its origin. This raises the interesting question of whether the
guantum trajectories exhibit some sort of ergodic property on the state space.

12. Quantum energy surfaces

In order to pursue this question further, let us consider the foliation ofitféirBensional
manifold I"?* by level surfaces of constant energy. The ‘energy’ here is given by the expec-
tation of the Hamiltonian operator. For simplicity we consider here, specifically, the case
of a nondegenerate Hamiltonian with eigenvaldggi = 0, 1, 2, ... , n). The foliation
corresponding to such a Hamiltonian contains two degenerate folia, associated with the
extremal eigenvalueSy andE,,, for which the energy surfaces reduce to points. For values
of E suchthatEg < E < Ej0r E,_1 < E < E,, the energy surfaces are topologically
equivalent to sphere$”’~* of dimension 2 — 1, endowed with a Riemannian geometry
induced by the Fubini—Study metric.

For intermediate values of the energy, the resulting surfaces are more intricate, and are
best perhaps considered on a case by case basis. [f& n,thenforE; < E < Ej1,the
resulting manifold is given by a hyperboloid k% of a certain signature, compactified by
some spherical structure at infinity. The signature is givefRlby— j), 2j}forO < j < %n
and by{2(j + 1), 2(n — j — 1)} for %n < j < n. The intrinsic Riemannian structures of
these surfaces, as well as the extrinsic embedding curvature, depend on the ratios of the
energy differencesE; — E)/(E; — E)fori, j =0,1,... ,n.

WhenE takes an eigenvalugy, the energy surface is singular at the pintorrespond-
ing to the eigenstate with that eigenvalue. ThusEas increased we obtain a remarkable
parametric family of manifolds punctuated by singular configurations, corresponding to the
passage of through its eigenvalues. In particular, the topological structure of the energy
surface changes dsis increased fronkg to E,. We can view each of the structures thus
arising as the topological phase associated with the given energ\Elelfale also include
the singular surfaces at the eigenvalues as different topological phases, then for a generic
nondegenerate Hamiltonian with + 1) eigenvalues, the energy folia admitgistinct
topological phases.

For a Schrodinger evolution, the energy is clearly conserved, corresponding to the fact
that the Killing trajectory associated with a given Hamiltonian necessarily lies in a level
surface of that Hamiltonian. It follows, furthermore, that the resulting flow on a given such
surface is an isometry of the Riemannian metric induced on that surface. Given an initial
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state on a generic energy surface, the Killing trajectory is necessarily confined to a subfolium
of dimensiom that is topologically an-torus7”. The Killing trajectories that do not close
thus exhibit a quasi-ergodic property on these toroidal subfolia.

Consider, e.g., the case 62, for which the underlying geometry is already quite
sophisticated (cf. [45]). Let us writg® for a generic point an& (i = 0, 1, 2) for the
eigenstates of a nondegenerate Hamiltonian, Bn@ = 0, 1, 2) for the corresponding
eigenvalues, in ascending order. Then for the energy surface with efBexgyhave

_ Eovovo + Exyain + Eayaye
Yovo + V1Vt + Vo

wherey; £ ¥ Z;, andy; = ¥, Z¥ are the components gf* andv,, respectively, in a
basis determined by the energy eigenstalegi = 0, 1, 2).

Suppose that the enerdy lies in the rangeE1 < E < E». Then the equation for
the energy surface can be rearranged in the fobm- Eq)yoyo + (E — EDY1y1 =
(E2 — E)Yoyrp. BecauseE — Eg andE — E; are both by assumption positive, and because
Yo andiyr1 cannot both be zero, it follows that the relevant energy surface necessary lies in
the region ofCP? such thaty, # 0, i.e., an open region topologically equivalenith As
a consequence we can divide ¥y to obtain

E

E—FEy . E—-E; -
aa + BB =1,
Er— FE E>— E

wherea = /Y2 andB = 1/v¥2. The resulting energy surface is thus topologically a
3-sphere, and is given explicitly by a 3-ellipsoid in fR& geometry coordinatised by the
complex paife, 8.

Now we are able to consider more explicitly the Schroédinger trajectories, which in this
example are given by

O[(t) — eih(EO_EZ)tC((), ﬁ(t) — eih(El_EZ)tﬂO

and thus generate a toroidal submanifold of the given 3-surface, provideddeigo are
nonvanishing. Furthermore, the resulting family of toroidal surfaces can be parameterised
by |«|, which lies in the range & |«| < (E2 — E)/(E — Ep). The limiting values of this
range correspond to degenerate tori (circles); this situation arises when the initial state is
orthogonal either tZg or Z§, because the resulting Schrodinger evolution is necessarily
confined to the projective line.

WhenE = Ej, the system s either in its eigenstaiewhereyg = 2 = 0, or otherwise
we have(E1 — E)vovo = (E2 — E1)Y2y» andyry arbitrary. In the latter casgg andy,
are both necessarily nonvanishing, and we can divid¢to obtain

E1— Ep

——aa =1
Er— Eq

This determines a circl§®, while the arbitrariness of implies that can be written in
the formp = r €¢ for some real and¢. Thus the energy surface associated vlitk= Eq
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Fig. 11. Foliation of the state space GRby energy surfacesThe quantum state spadeis foliated by level
surfaces of the expectation of the Hamiltonian operator. The Schrédinger evolution preserves the energy of a given
initial state, and the resulting dynamical trajectory is confined te-torus7”. If the ratiosE; / E; of the energy
eigenvalues are irrational, then the trajectoryfdindoes not close. Here we illustrate the exampl€Bf. In the

case of a generic surface associated with the energy I&gels E < E1 andE; < E < Ep, the surfaces are
3-ellipsoids, while forE = E; the surface has a conical singularity at the eigengtate

is singular, and can be viewed as a céiewith the structureC® = (51 x R?) + p1, where
p1 is the singular point.

In particular, if we take the complex projective line joining the extremal eigenstgtes
and p», then there is a special circle on this projective line containing states for which
the expected energy is the same as the eigenvgjudhen the entire energy surface for
E = E1isobtained by joining each point on this special circle to the painthe joins thus
obtained are each topological spheres, with a common intersectyan ldtve deleteps,
then the punctured spheres separate, and we are left with the p§dduBt2. The topology
change of the energy surface, B®volves fromEg to E», therefore, can be conveniently
expressed as a topological sequence of the form

p—> S35 STxR?+p—> S35 p,

wherep denotes a point. This situation is illustrated in Fig. 11.

The situation in higher dimensions is rather more elaborate, but can be pursued by es-
sentially the same kind of reasoning. It is worth noting that the role of the energy surfaces
is significant in quantum statistical mechanics, and that the points raised above may thus
be of relevance in that context as well.

13. Quantum Hamiltonian dynamics

This line of argument can be taken further by studying the quantum trajectorieégn
use of differential geometry. When viewed as a real manifold, the state space is endowed
with a Riemannian structure, given by a positive definite symmetric mgjsi@a symplectic
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structure, given by an antisymmetric tensay,, and a complex structure, given by a tensor
J;, satisfying

JOJE = 58

These structures are required todognpatiblein the sense thaRap = gac/; andVv, JCb =
0, whereV, is the covariant derivative associated with,. Here we use Roman indices
(a, b, .. .) for tensorial operations in the tangent spac& ofrhe compatibility ofean, 2ap
andJ; makesl” a Kahler manifold. The existence of a Hamiltonian structure on the Hilbert
spaceH was pointed out by Chernoff and Marsden [31]. In the infinite-dimensional case it
suffices, for some purposes, to make use of the fact that the ngirémd the symplectic
structures2,p are at leastveaklynondegenerate in the sense that for any vector f&glds?
onr, £%ga, = 0 impliesé? = 0 andn“2ap = 0 impliesy® = 0. The fact that in infinite
dimensions the Fubini—-Study metric and symplectic structurestamagly nondegenerate
[60] means that many of the geometrical constructions valid in finite dimensions carry
through to the general quantum phase space.

The additional ingredient required for the specification of the dynamics is a Hamiltonian
function H(x) on I". Then the general dynamical trajectories Brare determined by a
relation of the form

$hapdx” = V, H dr.

The Schrodinger trajectories dnare given by a subclass of the general Hamiltonian tra-
jectories, namely, those for which the Hamiltonian functid(x) is of the special quantum
mechanical form

Vo () HEYP (x)
H(.x) =
¥y (Y7 (x)

Here, as beforey®(x) denotes a set of homogeneous coordinates for the corresponding
pointx in the projective Hilbert space. We see that for a Schrédinger trajediany), is the
expectation of the Hamiltonian operator in the pure state to which the paimtresponds.

In contrast with classical mechanics, where the phase space typically has an interpretation
in terms of position and momentum variables, in quantum mechanics the points in phase
space correspond to pure quantum states.

Quantum observables are intimately related to the metrical geometry ©he distin-
guishing feature of a quantum Hamiltonian functififix) is that the associated symplectic
gradient flong* = dx“/dr is a Killing field, i.e.,V & = 0. Indeed all Killing fields orl”
arise in this way through quantum observables. It is important to note that the Killing flows
onI" are necessarily Hamiltonian (cf. [66]). The Killing fields generate the symmetries of
the Fubini—-Study metrigap.

In the case of finite dimensions, we can say more about the quantum observables that
generate isometries on the Fubini—Study manifold (%) corresponds to a standard linear
observable, then in finite dimensions it is necessarily defined globally.@ne can show
that such functions correspond to global solutions of the characteristic equation
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V?H = (n+ 1)(H — H),

whereV? is the Laplace—Beltrami operator ¢ty H = HZ /(n+ 1) is the uniform average

of the eigenvalues QH;;‘ and 2 is the real dimension of . Conversely, if we are given

a Killing field &4, the corresponding observable functifiiix) can be recovered, up to an
additive constant, via the relation

3822V, 8, = (n+ 1)(H — H),

which follows directly from the characteristic equation if we make use of the compatibility
condition gap$23¢52°9 = ¢ along with the fact thagfié, = gan2°°V. H. We note, inci-
dentally, that in the Kibble—Weinberg theory, a general nonlinear quantum observable is a
function onI” such that the characteristic equatiom@ necessarily satisfied. As a conse-
guence, the corresponding symplectic gradient flow is no longer necessarily a Killing field.

Now we are in a position to confirm the remark made in the previous section that the
Schradinger flow, when restricted to a given energy surface, will generate an isometry of
that surface. This can be verified by showing that the Lie derivative

Lehap = &°Vehap + hepVaé© + hacVpé©
vanishes, wherghé® = 23V, H is the Schrodinger flow and

V,HV),H

hap = e
ab = gab V.HV'H

is the induced metric on the given energy surfétec) = E. A calculation then shows

that the desired result follows as a consequence of the facgtthsaa Killing vector of the
Fubini—Study metric, and that the energy uncertainty is a constant of the motion along each
Schrédinger trajectory.

14. Uncertainty relations and geometric phases

The metrical geometry df also plays a significantrole in determining the statistical prop-
erties of observables. For example, in the pure stdlte squared uncertainty (variance) of
a quantum mechanical observable represented by the furfctions (AF)? = ganF? F?,
where F¢ is the unique gradient vector field satisfyiggyF? = V, F. This leads to the
following interpretation of quantum mechanical uncertainty. We folidtevith surfaces
given by level values of (x). We allow the foliation to be ‘singular’ in places, e.g., at the
energy eigenstates, where the energy surfaces are degenerate.

Through a given pure statethere is a unique such surface, and the uncertatrfiyis
the length of the gradient vector to that surface #see Fig. 12). The observabléXx)
andG(x) are incompatible if their Poisson brackét,[G] = 22apF*G? is nonvanishing.
In that case the Heisenberg uncertainty relation

(AF)2(AG)? = L[F, G]?
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T V.F

S
| <<//F (x)= constant’

Fig. 12.The observable uncertaintyhe quantum phase spakés foliated locally by level surfaces of the function
F(x). The quantum uncertainty in the corresponding observable, in the pure sistgven by the magnitude of
the gradient ofF(x) at that point.

follows directly as a consequence of the geometric inequality
(8abF“ F")(2abG“G") = (abF*G")* + §(2abF*G")?,

if we omit the first term in the right-hand side. This inequality, which follows as a conse-
guence of the standard argument for the Hermitian Schwartz inequality in Hilbert space,
holds for any vector field$* and G* on a Kéhler manifold. Note that the omitted term
gabF G gives rise to the anticommutator of the observai#lendG.

The geometrical approach to uncertainty here ties in closely with the statistical idea of
the Cramér—Rao inequality for the variance lower bound in estimation theory (cf. [49,80]).
In the case of a pair of canonically conjugate observabBles and Q(x) defined on an
appropriate region of", satisfying [P, Q] = &, we can expand the gradient to the surfaces
of constantQ (x) in a suitable basis to obtain a series of generalised Heisenberg relations
[18-21], an example of which is

_ 2,2
(AP)2(AQ)? > %hz (1+ (14(P) — 3u2(P)9) )

pe(P)p2(P) — na(P)?

whereui (P) = ((P — (P)) is thekth central moment of the observalffein the state

x. This inequality has the following statistical interpretation. Suppose that we are given an
unknown quantum state of a particle, parameterised by its positiand that we wish to
estimate the position of the particle by a suitable measurement. The observable function
corresponding to the parametgis then given byQ, and the statistical estimation gfvia
measurement o@ gives rise to an inevitable variance lower bound, expressed in terms of a
certain combination of the momenig (P) of the momentum distribution associated with

the given state. Likewise, if we consider momentum estimation, then the corresponding
variance lower bound is given by the moments of the posifion
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ﬁ% —(E,-E,)sind

Fig. 13.The Anandan—Aharonov relatioihe quantum evolution of a two-state system corresponds to the rigid
rotation of a 2-sphere with angular frequeriey = E»> — E;1. The speed of the trajectory is greatest at the equator,
which consists of states of maximal energy uncertainty.

An interesting interplay between the quantum dynamical trajectories and the uncertainty
relations was pointed out by Anandan and Aharonov [8]. In particular, it follows from
the projective Schrédinger equatiémzab dx? = V,H dr and the expression for the line
element d2 = g, dx?dx? that the ‘speed’ in the state spafealong the dynamical
trajectory at the point is

1 ds

EBE = AH,
whereAH is the energy uncertainty in the given state. For example, in the case of a two-state
system with eigenstates at the poles of a 2-sphere, the quantum evolution corresponds
to a rigid rotation of the sphere, with constant angular frequency, for which the speed
is greatest at the equator, corresponding to states of maximum uncertainty (as shown in
Fig. 13).

This result is related to properties of theometric phasatroduced by Berry and sub-
sequently applied in many situations [6,7,15,84,86,89-93]. Consider a closed ipdtie
guantum phase spacefis a standard dynamical trajectory, then it corresponds to a closed
Killing orbit, but we shall allow for the possibility of more general paths, e.g., as might be
generated by a time-dependent Hamiltonian operator. The geometric phase associated with
such a cyclic evolution is given by the integral

Blv] =/.Qabdx“/\dxb,
)

whereX is any real 2-surface ifv such thaty = 9. Owing to the relatiorV,2pc = 0, it
follows from Stokes’ theorem that the valuegffy] is independent of the choice of surface
X spanning the loog, and can be given the following interpretation.

The punctured Hilbert spagé = # — {0}, with the origin deleted, is a fibre bundle over
I'. Therefore, given a trajectony in I", we can form a corresponding trajectd?y 1[y]
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in 7, called the horizontal lift of,. This is obtained by solving theodifiedSchrodinger
equation

oYY

'ET = (H§ — E[H]53)y",
whereE[ H] is the expectation of the Hamiltonian in the stété. Despite its nonlinearity,
the modified Schrodinger equation is physically natural inasmuch as its stationary states are
energy eigenstates. In this connection, it is worth drawing attention to the fact that in the
case of the modified Schrddinger dynamics, the time-independent Schrédinger equation

Hiy’ = E[H]y*®

follows directly from the stationary state requirement, without the introduction of the
so-called correspondence princii¢H] < iko;.

The horizontal lift is characterised by the condition that the tangent to the @urife/]
in, given bydv® /dz, is orthogonal to the fibre directioh®, so we havel, dy* /dr = 0.

In the case of a closed logp, B[] measures the phase changelifi over the corre-
sponding circuit ifP~[y]. If the given loopy in I" subsequently evolves in time, then
Bly] is a quantum mechanical analogue of the Poincaré integral invariant (cf. [2,9]), as
illustrated in Fig. 14. We note, incidentally, that the notion of geometric phase discussed
here also applies to nonlinear quantum mechanics, for which the Hamiltéhiendoes

= —

V74 Vid
_(' Q@Jb (_'1 1Bl
2yl £y) b

\J

tl L

Fig. 14. The horizontal lift of a quantum trajectory and Poiné& invariant integral The Berry phase[y]
associated with a general cyclic trajecterin the quantum phase spatés given by the integral of the symplectic
form §2ap over a 2-surface&r spanningy. This integral measures the phase change that develops in the horizontal
lift of  to the corresponding patA—[y] in the Hilbert bundlef over I'. If the cyclic trajectory subsequently
evolves unitarily in time, the[y] is the quantum analogue of the integral invariant of Poiacand we have
Bly1] = Bly2]- This result is valid even if we relax the unitarity condition and consider nonlinear dynamics of the
Kibble—Weinberg type.
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not satisfy the characteristic equation for linear observables. The role of the geometric phase
in both linear and nonlinear quantum mechanics continues to be explored.

15. Mixed states

Phase-space geometry sheds some light on the peculiar role of probability in quantum
mechanics. For a review of the current status of the relation between classical and quantum
probability, see, e.g., [87]. For many purposes it suffices to characterise the state of a
guantum system by its density matrix, which allows one to compute the expectation of any
observable. The question is, is this sufficientdtirpurposes? In this connection we note
that there are at least two situations where it is useful to consider probability distributions
on the state manifold™ itself. One is in the description of the statistical properties of a
measurement outcome; the other is the representation of ensembles in quantum statistical
mechanics.

In both cases, the state of the system can be characterised by a probability density function
or measurep (x) on I', in terms of which the expectation of any functiétix) on I" can
be written

E[F] :/,o(x)F(x)dx.
r

We think of F'(x) as representing the expectation of the corresponding (possibly nonlinear)
observablegonditionalon the system being in the pure statéThenE[ F] is theuncondi-
tional expectation, where we averafféx) over the pure states, weighting with the density
p(x). A pure state arises f(x) is as-function concentrated on a point in. Consider the
example of a measurement where initially the system is in a pureXtaed the observ-
able has a finite number of eigenstates, as in the case of a spin 1 system when we measure
the spin along an axis. The result of this measurement is one of the three spin eigenstates,
and these arise with probabilities determined by the Fubini-Study distance. The density
function p(x) for the state of the system after a measurement is given by a sum of three
8-functions, concentrated at the eigenstates, weighted by these probabilities.

In the case of dinear quantum observable, the unconditional variance¢f) in a
general mixed state(x) is given by

VIF] =/FP(X)(F(X)—E[F])de+/rp(X)(gabF“Fb)2dX-

A further simplification emerges by virtue of the special form of a linear observable, for
which we haveE[F] = ,o“ F’3 where

_/ . )w(xwa(x)
Fe ¥y ()Y (x)

is thedensity matrixassociated witl (x). The infinite-dimensional analogue of this formula
has been established by Cyranski [36]. For the calculation of expectations in ordinary linear
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guantum mechanics it suffices to consider the density matrix alone, since all such statistical
guantities calculated witp (x) reduce to expressions invoIvimj. Therefore, for certain
purposes we can regang itself as offering a complete representation of the state of
the system. Indeed, a considerable literature now exists analysing various aspects of the
geometry of the space of density matrices (see, e.g., [37,38,59,75,89-93], and references
cited therein).

One should bear in mind, however, that the density maffixvhich is the lowest moment
of the projection operator in the stagtéx), does not in general contain all the information
of the system when we are dealing with nonlinear observables. This follows from the fact
that the information of a generic stat€x) is contained in the set @l the moments (cf.
[25,63]). In the case of a nonlinear observable, we must consider a general(stateure
or mixed, because the density matrix is not sufficient to take the expectation of such an
observable. Some specific examples of nonlinear observables have been studied, e.g., by
Weinberg [95,96]. The entanglement meastrmtroduced in Section 9 provides another
interesting example of a nonlinear observable arising in a natural context. Indeed, now we
are able to examine the issue of entanglement as it applies to mixed states. This is an area of
investigation of considerable currentinterest (cf. [50,59], and references cited therein), and it
has a natural characterisation in the geometrical approach. More specifically, given a general
mixed stateo(x) on the quantum state space, the associated measure of entanglement is
given by the expectation

A(p) Z/Fp(X)A(X)dx,

which is invariant under local unitary transformations that preserve the disentangled state
space. The exclusive consideration of the density matrix in a nonlinear setting can lead to
paradoxical conclusions, such as the possibility of superluminal EPR communication (cf.
[46,47,78)).

Given ageneral stajgx, t) and a Hamiltoniar# (x), the evolution of (x, ¢) is governed
by the Liouville equation,

%hz—’; = 2%V, oV, H,

where the Poisson bracket betweetx, 1) and H(x) is determined by the symplectic
structures2, on I'. In the case where the Hamiltonian is a linear quantum observable, the
Liouville equation is equivalent to the standard Schrodinger dynamics associated with a
mixed stateo (x, ). On the other hand, if the Hamiltonian is a nonlinear observable, then
the Liouville equation no longer corresponds to a linear Schrédinger evolution.

It is interesting to note, nevertheless, that, contrary to what has been argued in literature
(cf. [74]), in the case of nonlinear quantum mechanics of the Kibble-Weinberg type, the
guantum Shannon entropy

S(p) = —f px, 1) Inp(x, 1) dx
r
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associated with a general mixed state, ) remains constant in time (cf. [97]). This result,
which is insensitive to the specific functional form$p), follows as a consequence of the
Liouville equation forp(x, ). One can also show [25] that, given the information of the
density matring, the corresponding quantum Shannon entropy obtained by maximising
S(p) is generally different from the von Neuman entropy.

More generally, the definition of entropy and equilibrium in quantum statistical mechan-
ics brings up conceptual issues, since, like the quantum measurement problem, it involves
the interface of microscopic and macroscopic physics. There is also a relationship to funda-
mental issues in probability theory. Suppose we consider a quantum system characterised
by a state spac& and a Hamiltonian functiorH (x) with discrete, possibly degenerate
energy levelsE; (j = 1,2,..., N). Let us writed; (x) for a normalised-function onr”
concentrated on the pure statewith energyE ;. Thus x; is the jth energy eigenstate. Then
if the quantum system is in equilibrium with a heat-bath at inverse temperaturé/kT,
the state of the system is evidently of the form

X exp(—BE)S; (x)
- Z(B)

whereZ(g) = _ ;exp(—BE;) is the partition function. This is the canonical distribution

of quantum statistical mechanics, characterised by a Gibbs distribution concentrated on
the energy eigenstates with Boltzmann weights(ex{E ;)/Z(B). The standard canonical
density matrix associated with this distributiopfs = exp(—p Hy') / Z(B), which is clearly
independent of the phase and scale of the underlying energy eigenvectors, and thus can be
regarded as belonging to the geometryof

p(x)

)

16. Quantum theory and beyond

There is an element of paradox at the heart of statistical mechanics, related to the fact that
there are many distinct probability distributions Brthat give rise to the canonical density
matrix. A natural question to ask, therefore, is whether there exists a ‘preferred’ density
function onI” for the canonical ensemble. In the case of classical mechanics, the maximum
entropy argument ‘selects’ a preferred distribution subject to the given constraints. It is
interesting therefore that when applied to quantum mechanics, this argument leads to a
guantum canonical ensemble characterised by the measure

expi—pH(x))
Jrexp(—BH (x)) dx

rather than the system of weight&dunctions concentrated on energy eigenstates indicated
earlier [22,23]. However, the maximum entropy ensembl& q@rojects to a density matrix

quite distinct from the canonical density matrix. It may be that in the limit of a large
number of constituents there is an equivalence of ensembles, analogous to that arising in
classical statistical mechanics. The point here is that, even if the macroscopic energy of
a substance in thermal equilibrium with a fixed heat-bath is specified, there is no known

p(x) =
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principle that requires the individual subconstituents of that substance to be in energy
eigenstates. Could it be that in some situations there exists a mechanism that causes systems
to spontaneously devolve to energy eigenstates? A promising example of such a mechanism
is the energy-based stochastic state vector reduction process considered by Gisin [46],
Percival [73], Hughston [52], and Adler and Horwitz [3].

A further reason for the consideration of general probability distribution$’ s that
such states are necessary for an account of the statistical properties of observables in non-
linear quantum systems. These systems were given a general characterisation by Kibble
[55,56], who observed that if we keep the phase spaoéguantum mechanics, along with
the Fubini—Study metric and the associated symplectic structure, but extend the category
of observables to include more general functionsiarthen the corresponding nonlin-
ear Schrodinger dynamics can still be expressed in Hamiltonian form%hézab dxt =
V. H dt. Here H(x) represents a general nonlinear functional of the wave function, not
necessarily the expectation of a linear operator. The peculiar status of such functions in
linear quantum mechanics was pointed out by Mielnik [63], who remarks,ih the or-
thodox theory only the quadratic forms are observables: the other functioti®ough they
can be experimentally determined, are not statistical averages of any quantum mechanical
experiment’.

An example of an evolution generated by a nonlinear observable is given by the Newton—
Schradinger equation. Consider a quantum system of self-gravitating particles, described by
the Schrodinger equation ° with a potentialp (x), as described earlier, whepex) is the
gravitational potential due to the probable mass distribution of the quantum system, given
by the Poisson equatioi’g (x) = 4rmp(x), wherep(x) = ¥ (X)¥ (X)/ [ ¥ (X) ¥ (x) d3x.
Because the potential depends on the wave fungtion, the resulting Schrédinger equation
is nonlinear. As another example of nonlinear dynamics we might envisage a modification
of the Schrodinger equation that would tend to drive an initially entangled system towards
a state of disentanglement.

The general features of phase space based nonlinear quantum dynamics have been
studied by a number of authors (e.g., [3,42,46,51,52,57,64,65,73,74,78,95-97]). We also
draw attention to the work of Bialynicki-Birula and Mycielski [16]. It is surprising how
naturally geometric quantum mechanics can be adapted to so many aspects of the non-
linear regime. This suggests that the geometric approach may eventually be useful in
solving some of the key open problems in quantum theory, e.g., a clear understanding
of the process of state reduction and a proper integration of the theory with gravitation
[13,39,98].
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