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Abstract

The manifold of pure quantum states can be regarded as a complex projective space endowed
with the unitary-invariant Fubini–Study metric. According to the principles of geometric quantum
mechanics, the physical characteristics of a given quantum system can be represented by geometrical
features that are preferentially identified in this complex manifold. Here we construct a number of
examples of such features as they arise in the state spaces for spin1

2, spin 1, spin3
2 and spin 2 systems,

and for pairs of spin12 systems. A study is then undertaken on the geometry of entangled states. A
locally invariant measure is assigned to the degree of entanglement of a given state for a general
multi-particle system, and the properties of this measure are analysed for the entangled states of a
pair of spin1

2 particles. With the specification of a quantum Hamiltonian, the resulting Schrödinger
trajectories induce an isometry of the Fubini–Study manifold, and hence also an isometry of each of
the energy surfaces generated by level values of the expectation of the Hamiltonian. For a generic
quantum evolution, the corresponding Killing trajectory is quasiergodic on a toroidal subspace of the
energy surface through the initial state. When a dynamical trajectory is lifted orthogonally to Hilbert
space, it induces a geometric phase shift on the wave function. The uncertainty of an observable
in a given state is the length of the gradient vector of the level surface of the expectation of the
observable in that state, a fact that allows us to calculate higher order corrections to the Heisenberg
relations. A general mixed state is determined by a probability density function on the state space,
for which the associated first moment is the density matrix. The advantage of a general state is in its
applicability in various attempts to go beyond the standard quantum theory, some of which admit
a natural phase-space characterisation. © 2001 Elsevier Science B.V. All rights reserved.

MSC:81 P 99

Subj. Class:Quantum mechanics

Keywords:Quantum phase space; Quantum measurement and entanglement; Generalised quantum mechanics;
Kibble–Weinberg theory; Quantum information and uncertainty

∗ Corresponding author.
E-mail addresses:d.brody@ic.ac.uk (D.C. Brody);lane.hughston@kcl.ac.uk (L.P. Hughston).

0393-0440/01/$ – see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S0393-0440(00)00052-8



20 D.C. Brody, L.P. Hughston / Journal of Geometry and Physics 38 (2001) 19–53

1. Introduction

The line of investigation which we refer to as ‘Geometric Quantum Mechanics’ was in-
spired in part by the work of Kibble [55,56], who, in a remarkable set of papers, showed how
quantum theory could be formulated in the language of Hamiltonian phase-space dynam-
ics. Previously it was generally believed by physicists that it was onlyclassicalmechanics
that exhibited a natural Hamiltonian phase-space structure, to which one had to apply a
suitablequantisation procedureto produce a very different kind of structure, namely, the
complex Hilbert space of quantum mechanics together with a family of linear operators,
corresponding to physical observables. However, with the development of geometric quan-
tum mechanics it has become difficult to sustain this point of view, and quantum theory has
come to be recognised more as a self-contained entity.

A notable attempt to codify the quantisation procedure in a rigourous mathematical
framework was pursued in thegeometric quantisation programof Kostant, Souriau and
others (see, e.g., [99], and references cited therein). Geometric quantum mechanics, how-
ever, is not concerned with the quantisation procedure, as such, but accepts quantum theory
as given. Indeed, from a modern perspective the nature of the problem has to some ex-
tent been reversed, and the main objective now is to understand better how the classical
world emerges from quantum theory. Thus, in contrast to the aforementioned ‘geometric
quantisation’ program, what we really need might be more appropriately called a ‘geometric
classicalisation’ program.

To this extent, there may even be grounds for arguing that the notion of quantisation is
superfluous. Present thinking on these issues is based on a special relationship between
classical and quantum mechanics distinct from the quantisation idea. The key point is
that quantum theory possesses an intrinsic mathematical structure equivalent to that of
Hamiltonian phase-space dynamics, only the underlying phase space is not that of classical
mechanics, but rather the quantum mechanical state space itself, i.e., what we call the ‘space
of pure states’.

The approach to quantum mechanics achieved via its natural phase-space geometry offers
insights into many of the more enigmatic aspects of the theory: linear superposition of states,
quantum entanglement, quantum probability, uncertainty relations, geometric phases, and
the collapse of the wave function. One of the goals of this paper is to illustrate in geometrical
terms the interplay between these aspects of quantum theory.

The plan of the paper is as follows. In Sections 2–4, we introduce a projective geometric
framework for quantum mechanics, and review the main features of the quantum phase
space. In Section 5, the phase space of a spin 1 system is studied, and in Section 6, we look
at a spin3

2 system, relating the properties of this system to the geometry of the twisted cubic
curve inCP3. In Section 7, we examine the state space of a spin 2 system, which can be
characterised by the specification of a self-conjugate rational quartic curve inCP4.

In Section 8, we develop a geometric theory of entangled states and discuss the properties
of quantum measurements made on such systems, a topic currently of great interest in
quantum physics. This theory is extended in Sections 9 and 10, where we introduce a
locally invariant geometric measure of entanglement, and explore its applications.
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In Sections 11–14, we consider quantum dynamics from a geometric point of view, and
demonstrate in particular a quasiergodic property satisfied by the Schrödinger trajectories.
We carry out an analysis of the energy surfaces in which the Schrödinger trajectories are
confined. We also show that the theory of the geometric phase has a natural characterisation
in the present setting, allowing us to introduce a quantum mechanical analogue of the
Poincare integral invariant.

Then in Section 15, we examine the status of mixed states in the geometric framework, and
discuss the properties of general states characterised by density functions on the quantum
phase space. The entropy associated with a general quantum state is shown to be preserved,
even under nonlinear dynamics of the Kibble–Weinberg type.

The study of the geometry of the state space of quantum theory has had a rich and
lengthy history, including, e.g., the important investigations of von Neumann [94] and
Segal [82]. We mention also the influential work of Mielnik [61–63] and Chernoff and
Marsden [31]. In addition to Kibble and his collaborators, many other authors (see, e.g.,
[1,3–5,8,10–12,17–30,32–35,40,42–44,48,51,52,60,77,81,89–93]) have contributed to the
development of geometric quantum mechanics, and in doing so have demonstrated that this
methodology not only provides new insights into the workings of the quantum world as we
presently understand it, but also acts as a base from which extensions of standard quantum
theory can be developed, some of which we shall touch upon briefly towards the end of this
paper, in Section 16.

2. Projective state space

Let us begin by reviewing briefly how quantum mechanics is ordinarily formulated. A
physical system is represented by a wave functionψ(x, t), which for each timet belongs to
a complex Hilbert spaceH. We also require a set of linear operators onH, corresponding
to observables. The wave function characterises the ‘state’ of the system at timet . In the
case of a single particle of massmmoving in Euclidean three-spaceR3 under the influence
of a potentialφ(x), the evolution of the system is given by Schrödinger’s wave equation

i~
∂

∂t
ψ(x, t) =

(
− 1

2m
∇2 + φ(x)

)
ψ(x, t).

Given an initial conditionψ(x,0), the Schrödinger equation determines the development
of the state, in terms of which we can then calculate the expectation of any observable.

Physical properties of the system depend on the wave function only up to an overall
complex factor. Suppose, for instance, we consider an observation to determine whether
the particle lies in a regionD in R3. We define the linear operator̂χD, thecharacteristic
functionfor D, by the propertŷχDψ(x) = ψ(x) for x ∈ D andχ̂Dψ(x) = 0 for x /∈ D.
Thusχ̂D ‘truncates’ the wave function outsideD. In particular,χ̂D has two eigenvalues,
1 and 0, corresponding to eigenfunctions concentrated onD and on the complement ofD
in R3. The probability of an affirmative result for a measurement to determine whether the
particle lies inD is given by the expectation of the operatorχ̂D, i.e.,
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E[χ̂D] =
∫
R3ψ̄(x)χ̂Dψ(x)d3x∫
R3ψ̄(x)ψ(x)d3x

.

In this case, we note that the probability density function

p(x) = ψ̄(x)ψ(x)∫
R3ψ̄(x)ψ(x)d3x

onR3 is independent of the phase and scale ofψ(x). In other words, the state of the system
is not given byψ(x) itself, but rather by an equivalence class modulo transformations of
the form

ψ(x, t) → Λ(t)ψ(x, t)

for any nonvanishing complex time-dependent functionΛ(t). For this reason, we say the
state is given, at any time, by a ‘ray’ through the origin inH. The space of such rays is
called projective Hilbert space, denotedPH . Most of the standard operations of quantum
mechanics can be referred toPH directly, without consideration ofH itself. For example,
the Schrödinger equation is not invariant under a change of phase and scale forψ(x),
whereas theprojectiveSchrödinger equation

i~

[
ψ(y)

∂ψ(x)
∂t

− ψ(x)
∂ψ(y)
∂t

]
= − 1

2m
[ψ(y)∇2ψ(x)− ψ(x)∇2ψ(y)]

+[φ(x)− φ(y)]ψ(x)ψ(y)

is, in fact, invariant under such transformations, as one can easily verify. Had Schrödinger
elected to present this relation as his wave equation, none of the physical consequences
would have differed.

3. Pure states

There is a beautiful geometry associated with the projective Hilbert spacePH which is
so compelling in its richness that, in our opinion, all physicists should become acquainted
with it. The basic idea can be sketched as follows. For simplicity we use an index notation
for the Hilbert spaceH. Instead ofψ(x) we writeψα, where the Greek indexα labels
components of the Hilbert-space vector with respect to a basis. This notation serves us
equally well whetherH is finite- or infinite-dimensional (cf. [69,70]). The highly effective
use of the index notation for Hilbert space was popularised by Geroch [41]. For the complex
conjugate ofψα we writeψ̄α. The ‘downstairs’ index reminds us thatψ̄α is a ‘bra’ vector,
i.e., it belongs to the dual of the vector space to whichψα belongs.

The usual inner product betweenψα and ψ̄α can be writtenψ̄αψα, with an implied
summation over the repeated index. In the case of a wave function, this is equivalent to∫
R3ψ̄(x)ψ(x)d3x, which in the Dirac bra–ket notation is〈ψ̄ |ψ〉. By use of the index notation

the Schrödinger equation can be represented in the compact form i~∂tψ
α = Hα

β ψ
β , where
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Fig. 1.Hermitian correspondence. A pure quantum mechanical state corresponds to a ray through the originO in
complex Hilbert spaceH. Such a ray is given by a Hilbert space vectorξα , specified up to proportionality, which
can also be used as a set of ‘homogeneous coordinates’ for a point in the projective Hilbert spacePH . The states
ψα orthogonal toξα constitute a projective hyperplane inPH , with the equation̄ξαψα = 0. This hyperplane
corresponds to a pointξ̄α in the dual projective spacePH ∗.

Hα
β is the Hamiltonian operator,∂t = ∂/∂t , and for the projective Schrödinger equation we

have

i~ψ [α∂tψ
β] = ψ [αHβ]

γ ψ
γ ,

where the skew brackets indicate antisymmetrisation.
A Hilbert space vectorξα can also represent homogeneous coordinates for the corre-

sponding point in the projective Hilbert spacePH . This is valid when we consider relations
homogeneous inξα, for which the scale is irrelevant. For example, the complex conjugate
ξ̄α of a ‘point’ in PH can be represented by the linear subspace (hyperplane) of pointsψα

in PH satisfyingξ̄αψα = 0. The set of all such hyperplanes constitutes the dual space
PH ∗. The points ofPH ∗ correspond to hyperplanes inPH . Conversely, the points ofPH
correspond to hyperplanes inPH ∗, as indicated in Fig. 1.

One of the advantages of the use of projective geometry in the present context is that
it allows us to represent states (points) and dual states (hyperplanes) as geometrical ob-
jects coexisting in the same spacePH . The complex conjugation operation, in particular,
determines aHermitian correspondencebetween points and their conjugate hyperplanes.

4. Superposition of states

The join of two distinct pointsξα andηα inPH is a complex projective line, represented
by points inPH of the form

ψα = Aξα + Bηα,
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Fig. 2. Transition probability. The join of two statesξα andηα in projective Hilbert spacePH is a complex
projective lineCP1: Lαβ = ξ [αηβ] . The points onLαβ represent superpositions ofξα andηα . Such a line is
intrinsically a real 2-manifold with spherical topology. The conjugate hyperplanesξ̄α and η̄α intersectLαβ at
pointsξ̂ α andη̂α in PH . The angleθ determined by the cross-ratio cos2(θ/2) = ξαη̄αη

β ξ̄β/ξ
γ ξ̄γ η

δη̄δ induces
a metrical geometry onS2, for whichθ is the usual angular distance, andξ̂ α is antipodal toξα .

whereA andB are complex numbers, not both zero. A neat way of characterising this
line is in terms of the tensorLαβ = ξ [αηβ] . Physically,Lαβ represents the system of all
possible quantum mechanical superpositions of the statesξα andηα. Consider, e.g., the
finite-dimensional case wherePH = CPn, then-dimensional complex projective space.
Then, because of the skew-symmetry ofLαβ it has 1

2n(n+ 1) complex components, which
can be viewed as the line coordinates of the given line. The fundamental property of these
line coordinates is that their ratios are independent of the choice of the two pointsξα and
ηα, in such a way that all points on the given line are treated on an equal footing.

The simplest situation in which a probabilistic idea arises in quantum theory is also the
simplest situation in which the concept of the ‘distance’ between two states arises. The
transition probability for the statesξα andηα determines an angleθ as follows:

cos2
(
θ

2

)
= ξαη̄αη

β ξ̄β

ξγ ξ̄γ ηδη̄δ
.

Clearly,θ is independent of the scale and phase ofξα andηα. This angle defines a distance
between the statesξα andηα in PH , as illustrated in Fig. 2. If the states coincide, then
θ = 0; for orthogonal states we haveθ = π , the maximum distance.

Suppose we setθ = ds andξα = ψα, ηα = ψα + dψα. By use of the expression for the
transition probability, expanded to second order, we find that the infinitesimal distance ds

between two neighbouring states is

ds2 = 8

[
ψ [α dψβ]ψ̄[α dψ̄β]

(ψ̄γ ψγ )2

]
,

an expression known to geometers as the Fubini–Study metric [9,58]. This metric is well
defined both in finite and infinite dimensions (see, e.g., [60]). The introduction of the
Fubini–Study metric illustrates how the notions of probability and distance become inter-
linked, once quantum theory is formulated in a geometric manner. Thegeodesic distance
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with respect to the Fubini–Study metric determines the transition probability between two
states. Indeed, the nontrivial metrical geometry of the Fubini–Study manifold is responsi-
ble for the ‘peculiarities’ of the quantum world, and in what follows we shall see various
examples of this phenomenon.

5. Spin measurements

The specification of a physical system implies further geometrical structure on the state
space. The point of view we suggest is thatall the relevant physical details of a quantum
system can be represented by additional projective geometrical features. Here and in sub-
sequent sections we shall illustrate this point with several examples. Let us first consider
the spin degrees of freedom of a nonrelativistic spin 1 particle, as represented by a sym-
metric spinorφAB (A,B = 0,1). The relevant Hilbert space has three dimensions, and we
denote the corresponding projective Hilbert spaceCP2. A symmetric spinor has a natural
decompositionφAB = α(AβB), whereαA andβA are called ‘principal spinors’, and round
brackets denote symmetrisation. There is a special conicC, corresponding to degenerate
spinors of the formφAB = ψAψB for some repeated principal spinorψA.

The identification ofC is sufficient to induce the structure of a spin 1 system on the
state space, since through any generic point inCP2 there are two lines tangent toC, and
the corresponding tangent points determine the principal spinors, up to scale, as shown in
Fig. 3. Alternatively, we can think of a conicC in CP2 being represented by a map (see,
e.g., [83]) fromCP1 to CP2 such that if(t, u) are homogeneous coordinates onCP1, we
have the Veronese embedding

C : (t, u) → (t2, tu, u2),

Fig. 3. Spin1 particle. A symmetric spinorφAB has three independent components which act as homogeneous
coordinates forCP2. The image of the mapC : CP1 → CP2, defined by{ψA ∈ CP1} → {ψAψB ∈ CP2}
determines a curveC in CP2. The tangent toC at the pointφAB = αAαB in CP2 consists of spinors of the form
φAB = α(AµB) for someµA. The intersection of the lines tangent to the pointsαAαB andβAβB is the point
α(AβB). Conversely, once a conicC is specified, a mapC−1 is established fromCP2 to point-pairs inCP1, called
principal spinors. The points onC map to degenerate point-pairs.
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where(t2, tu, u2) now represent homogeneous coordinates onCP2. Because a complex
projective line, in real terms, represents a sphereS2 (see Fig. 2), the specification of the
spin direction inR3 determines a point onS2, and hence onC.

For quantum mechanics the conic is required to be compatible with the complex conju-
gation operation on the state space in the sense that if we conjugate a point ofC, then the
resulting line is tangent toC. If in algebraic terms the conic is given byCαβξαξβ = 0, then
we requireCαβ = C̄αβ , whereCαβ andC̄αβ are, respectively, the inverse and the complex
conjugate ofCαβ . The complex conjugatēφAB = ᾱ(Aβ̄B) of a general state corresponds to
a complex projective line consisting of states of the formP ᾱAᾱB +Qβ̄Aβ̄B for arbitrary
complexP andQ (not both vanishing). Here we defineᾱA = εABᾱB andβ̄A = εABβ̄B ,
with εAB the natural symplectic structure. The rules for the complex conjugation mapc on
spinors are given, more explicitly, byc(αA) = ᾱA andc(ᾱA) = −αA. The latter identity
arises sincec(ᾱA) = c(εABᾱB) = εABα

B = −αA.
Recall in this connection that for any spinorφA we have the relationsφA = εABφB and

φAεAB = φB , and thatεAB satisfiesεAB = −εBA andεAB = ε̄AB. If we take the complex
conjugate of a state onC, the resulting line is tangent to the conic at a point, which we
call the conjugate of the original point onC. This establishes a Hermitian correspondence
between pairs of points onC. For a stateφAB = ψAψB the conjugate line consists of states
of the formλ(Aψ̄B) for arbitraryλA. This line touches the conicC at the pointψ̄Aψ̄B .

Each choice of a point onC, as noted above, determines a spin axis. For any spin axis
there are three possible spin states, with eigenvalues 1,−1 and 0. The spin eigenstates are
the pointsψAψB andψ̄Aψ̄B onC, having the eigenvalues 1 and−1, together with a third
point ψ(Aψ̄B) obtained by intersecting the lines tangent to the conicC at the other two
points, corresponding to eigenvalue 0, as indicated in Fig. 4.

When a spin measurement is made, the initial state corresponds to a generic pointX in
CP2, and the measurement is defined by a spin axis. The state then ‘jumps’ from its initial
point to one of the three spin eigenstates associated with the choice of axis. Quantum theory,
as such, states nothing about the ‘mechanism’ whereby this jump is achieved.

Fig. 4. Spin measurement. The state space of a spin 1 system has a conjugation relation that associates to each
pointψAψB on the special conic a conjugate pointψ̄Aψ̄B . The antipodal pointsψA andψ̄A on the corresponding
2-sphere select a direction in Euclidean 3-space. The three pointsψAψB , ψ̄Aψ̄B andψ(Aψ̄B) are eigenstates of
the spin operatorSz associated with this axis. The corresponding geodesic distancesθ1, θ−1, θ0 to a generic state
X ∈ CP2 determine the probabilities of the measurement outcomes forSz for a particle in the initial stateX.
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We can, however, compute the probabilities, and describe the result in geometrical terms.
First we calculate the distance fromX to each of the three spin eigenstates, by use of the
Fubini–Study metric. This gives us three anglesθ1, θ−1, andθ0. For each angle we compute
P(θ) = 1

2(1 + cosθ), which gives us the probability of transition to that particular state.
It is not obvious that the three probabilities computed in this way sum up to 1, given any
initial state in which the measurement is performed, but they do: this is a ‘miracle’ of the
Fubini–Study geometry.

6. Spin 3
2
3
2
3
2 and the twisted cubic curve

We have seen that in the case of a projective plane, there is a conicC, corresponding to
degenerate spinors obtained by a special map from a projective line to a plane. On the other
hand, in three-dimensional projective spaceCP3 there are two different kinds of locus to
be considered, each of which is in some respects a proper analogue of the conic, namely,
the quadric surfaceQ and the twisted cubic curveT . While a surface is the locus of a
variable point of space which has two complex degrees of freedom, a curve is the locus of a
variable point of space of one complex degree of freedom. When viewed as the state space
of a quantum mechanical system, the quadric surface inCP3 characterises the disentangled
states of a pair of spin12 particles, the geometry of which we shall study in some detail in
Sections 8–10.

The twisted cubic, the simplest nonplanar curve in projective geometry, on the other hand,
plays an essential role in the geometry of the state space of a spin3

2 particle. Analogous
to the conic curve, the twisted cubic can be represented by a map fromCP1 to CP3 of the
form

T : (t, u) → (t3, t2u, tu2, u3),

where(t3, t2u, tu2, u3) represents the homogeneous coordinates of a point onT in CP3.
It follows thatT is an algebraic space of the third degree, which meets a generic plane of
CP3 in three points.

In order to proceed further, we introduce a spinorial notation and let the symmetric spinor
ψABC = ψ(ABC) denote homogeneous coordinates onCP3 [54]. Then, the twisted cubic
curve is determined by the relationτAB = 0, where

τAB , ψCD(AψB)
CD.

As a consequence we see thatT is given by the common intersection of two-dimensional
net of quadric surfaces inCP3. Here the indices onψABC are raised and lowered according
to the standard conventions, so, e.g.,ψCD

B = εABψ
ACD. The general solution to the algebraic

relations given byτAB = 0 takes the formψABC = ξAξBξC for arbitraryξA. Then if we
parametrise a pointξA ∈ CP1 according to the schemeξA = (t, u), we recover the map
τ : CP1 → CP3 noted above.
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The specification of a twisted cubicT in CP3 induces anull polarity on the state space,
i.e., a natural correspondence between points and planes such that the polar plane of a given
point includes that point. The null polarity is given by the map

ψABC → ψABC = εAPεBQεCRψ
PQR

and it follows as an elementary spinor identity thatψABCψABC = 0 for any choice ofψABC.
In the case of a pointψABC = ξAξBξC on T , the corresponding polar plane intersectsT
solely at that point, with a threefold degeneracy, and is called theosculating planeat that
point.

Through a given pointξAξBξC ∈ T , the associated tangent line is given by points of the
form ξ (AξBηC), with ηA arbitrary. We say that a generic point ofCP3, with three distinct
principal spinors, is of type{1,1,1}. The point that lie on tangents toT are of type{2,1},
whereas the points ofT are of type{3}. A necessary and sufficient condition for a point
to be of type{2,1} is the vanishing of the invariantG = τABτ

AB. Hence we see that the
tangent lines toT generates a quartic surfaceG in CP3.

For quantum mechanics the twisted cubic has to be self-conjugate in the sense that the
complex conjugate plane of any point onT has to be the osculating plane of another
point onT . The choice of a point onT determines a spin axis. For each spin axis, there
are four possible spin eigenstates, with eigenvalues3

2, 1
2, −1

2 and−3
2. Two of the spin

states, corresponding to the eigenvalues±3
2, lie onT itself. These two states can be written

ψAψBψC andψ̄Aψ̄Bψ̄C , whereψ̄A = εABψ̄B andψ̄B = c(ψB).
The complex conjugate of the stateψABC = ψAψBψC on the twisted cubicT is the

planeψ̄ABC = ψ̄Aψ̄Bψ̄C in CP3, and this plane osculatesT at the pointψ̄Aψ̄Bψ̄C . Through
the pointψAψBψC there is a unique line tangent toT , and this line intersects the plane
ψ̄Aψ̄Bψ̄C at the pointψ(AψBψ̄C). This point is the spin12 eigenstate with respect to that
choice of axis. Conversely, the tangent line toT at the spin−3

2 stateψ̄Aψ̄Bψ̄C intersects
the osculating plane ofT atψAψBψC at the pointψ̄(Aψ̄BψC), which is the spin−1

2 state,
as illustrated in Fig. 5. That concludes our identification of the four possible spin eigenstates
that can arise with respect to a given choice of axis.

An interesting feature of the twisted cubic geometry arises from the fact that for any
symmetric spinorψABC we have the syzygistic relation

τABψ
ABC = 0,

which follows from the spinor identityε[ABεC]D = 0. This formula implies that through any
pointψABC in CP3−G, i.e., a point off the quartic surface, there exists a unique chord ofT .
This follows from the fact that, providingτAB is nondegenerate, the conditionτABψ

ABC = 0
implies a relation of the form

ψABC = uξAξBξC + vηAηBηC

for someξA andηA corresponding to a pair of spin axes such thatξAη
A 6= 0, where(u, v)

are homogeneous coordinates onCP1. It follows that an arbitrary quantum stateψABC in
CP3 −G admits a unique characterisation as a superposition of a pair of spin3

2 eigenstates
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Fig. 5.The twisted cubic curve as a system of spin states. The quantum phase space for a spin3
2 particle contains

a preferentially identified twisted cubicT which is self-conjugate in the sense that the complex conjugate plane
corresponding to any point onT necessarily osculates the curve at some other point onT , which we regard as
conjugate to the original point. The points ofT are those states which have an eigenstate of spin3

2 relative to
some choice of spin axis. Each point ofT corresponds to a choice of spin axis and direction, and its conjugate
corresponds to the same axis with a reverse of direction.

corresponding to distinct spin axes. IfτAB is degenerate, then the chord reduces to a tangent
line toT with a double point at the intersection, andψABC has a unique representation of
the formψABC = ξ (AξBηC).

7. The rational quartic curve and spin 2 systems

A similar analysis to that described in this section can also be pursued in connection
with the geometry of a spin 2 system, for which the state space isCP4, endowed with a
self-conjugate rational quartic curve. The geometry of this curve is closely related to the
Petrov classification of gravitational fields as developed in its modern form by Penrose [68]
and others. See, e.g., [71,72,76] for references and further relevant details.

In this connection we note that there are two levels of specialisation in the description of
the state space. If we takeCP4 with the Fubini–Study metric, but without the specification
of a self-conjugate rational quartic curve, then we have the state space appropriate for a
generic five-state system. If we takeCP4 with the rational quartic without the Fubini–Study
geometry, then we have the set-up appropriate for the geometry of gravitational fields,
but without bringing quantum mechanics into play. That is the situation where the Petrov
scheme arises. Finally, when we bring both the rational quartic and the Fubini–Study metric
into the picture, we have the state space geometry for a spin 2 quantum system.

Let us consider first the case when we have a rational quartic curveR in CP4, but without
consideration of the metric. For a general treatment of the properties of this curve, see, e.g.,
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Fig. 6.The Petrov classification. Passing through a generic pointψABCD = α(AβBγ CδD) in CP4 there are four
osculating solids of the rational quartic curveR. The points onR where these solids touch determine the four
principal spinors. A degeneracy of type{2,1,1} occurs if two of the solids coincide, andψABCD lies on an
osculating 2-plane. When three solids coincide, we find thatψABCD is of type{3,1} and lies on a tangent line.
When all four solids coincide,ψABCD is of type{4} and lies onR. The type{2,2} case arises whenψABCD is an
intersection point of a pair of osculating 2-planes.

[88]. The rational quartic is given by the Veronese embeddingR : CP1 → CP4, given by

R : (t, u) → (t4, t3u, t2u2, tu3, u4).

In spinor terms, a point onR is necessarily of the form

ψABCD = αAαBαCαD

for some choice ofαA ∈ CP1. The points onR thus correspond to ‘null’ gravitational
spinors, i.e., spinors of Petrov type{4}, with a fourfold degeneracy in the principal spinors.

Associated with any point ofR are three special linear spaces. These are the tangent
line, the osculating plane, and the osculating solid. The tangent line at the fixed point
αAαBαCαD ∈ R consists of spinors of the formα(AαBαCβD) for some choice ofβA.
The osculating plane consists of spinors of the formα(AαBβCγD) and for the osculating
solid we have spinors of the formα(AβBγ CδD). Four osculating solids, corresponding to
the four principal spinors, pass through a generic point ofCP4, as illustrated in Fig. 6.

The various types of degeneracies that can arise can be given an elegant characterisation
in terms of the geometry of the rational quartic curve. Here we follow a procedure very
similar to the cases described for spin 1 and spin3

2 (cf. [54,67]). The spinors of type{3,1}
or type{4} constitute together a sextic 2-surfaceM ∈ CP4 ruled by the tangent lines of
R. A necessary and sufficient condition for a spinor to lie onM is the vanishing of the
invariants

I = ψABCDψ
ABCD, J = ψAB

CDψCD
EFψEF

AB.

The spinors of type{2,1,1}, {3,1}, {2,2} and{4} constitute together a sextic primalD
in CP4 given by the equationI3 = 6J 2. This is a necessary and sufficient condition for
ψABCD to lie on an osculating plane ofR. More generally, we note thatCP4 −M is foliated
by a pencil of sextic primals with baseM, given bypI3 = qJ 2, wherep, q (not both
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vanishing) are homogeneous coordinates for a point inCP1. The spinors of type{2,2} or
{4} lie together on a two-dimensional quartic subsurfaceK of the sextic primalD, given by
the equation

ψ(ABC
KψDE

LMψF)KLM = 0,

which can be interpreted as the common intersection locus of a six-dimensional net of cubic
primals. The surfaceK is generated by intersections of pairs of osculating 2-planes.

When quantum theory is brought into the picture, we augment the operations indicated
above with the requirement that the rational quartic curve should be self-conjugate in the
sense that the complex conjugate of the polar solid of a point onR is another point onR.
The polar solid of a general point inCP4 with respect toR is defined to be the solid spanned
by the tangential points of the four osculating planes through the given point.

For a point onR, the polar solid is defined to be the osculating plane at that point. The
complex conjugate of this polar solid is a point which we call the complex conjugate of the
original point. We require that if the original point is onR, then so is its complex conjugate.
The choice of a point onR determines a spin-axis, and the complex conjugate of this point
then corresponds to the same axis but with the orientation reversed. In particular, the chosen
state onR hasSz = 2 with respect to the correspondingz-axis, and the complex conjugate
states hasSz = −2. TheSz = 1 state obtained by intersecting the tangent line of anSz = 2
state with the osculating solid of the correspondingSz = −2 state. TheSz = −1 state is
obtained by intersecting the osculating solid of theSz = 2 state with the tangent line of the
Sz = −2 state. Finally, theSz = 0 state is the point obtained by intersecting the osculating
planes atSz = 2 andSz = −2 states, as illustrated in Fig. 7. We remark, incidentally, that
theSz = 0 states are ‘real’ in the sense thatψABCD ∝ ψ̄ABCD for these points. Thus the
Sz = 0 states are given by the real points of the surfaceK.

In contrast with the spin32 case, where a general state can be expressed in a unique way
as a superposition of a pair ofSz = 3

2 states for two choices of spin axis, it is generally not
true that a spin 2 state can be expressed as a superposition of a pair ofSz = 2 states. For
this we require thatψABCD should lie on a chord ofR, a necessary and sufficient condition
for which is given by the vanishing of the cubic invariantJ . An equivalent way of stating
thatψABCD should lie on the chordal primalJ = 0 is that the four principal spinors should
satisfy the harmonic condition. On the other hand, passing through a general stateψABCD

there exists a one-parameter family of trisecant planes, each of which cuts the twisted quartic
at three points, thus allowing us to expressψABCD as a sum of threeSz = 2 states in∞1

ways. The locus generated by the trisecant planes through a general state is a quadric cone.

8. Geometry of entanglement

Now we consider the spin degrees of freedom of an entangled pair of spin1
2 particles. The

generic two-particle stateψAB for a pair of such particles (e.g., an electron and a positron)
has a four-dimensional Hilbert space, and the state space isCP3. There is a preferred point
Z in CP3, corresponding to the singlet state of total spin 0, for whichψAB = ψ [AB] . The
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Fig. 7.Geometry of the rational quartic curve. At a generic pointA on the curveR we can draw the tangent line
L, which lies in the osculating 2-planeM atA, which lies in the osculating 3-solidN atA. If B is another point
onR, then the tangent lineO toR atB lies in the osculating 2-planeP atB, which lies in the osculating 3-solid
Q atB. The tangent toR atAmeets the osculating solidQ atC. The tangent toR atB meets the osculating solid
N atD. The osculating planeM atA intersects the osculating planeP atB at the pointE. For a spin 2 system,
the curveR is self-conjugate: the complex conjugate hyperplane to a point onR is the osculating solid of another
point onR. The choice of a point onR determines a spin axis. IfA andB are conjugate, the eigenstates of the
spin operatorSz with eigenvalues 2,1,0,−1,−2 are given by the pointsA,C,E,D,B, respectively.

conjugate planēZ contains the triplet states of total spin 1, for whichψAB = ψ(AB). We
note thatZ̄ is endowed with a self-conjugate conicC, each point of which defines a spin
axis. There is also a surfaceQ ∈ CP3, given by the quadratic equation

εACεBDψ
ABψCD = 0,

consisting of states of thedisentangledformψAB = ξAηB , representing an embedding of
the product of the state spaces of the individual spin1

2 particles. The pure states off the
quadric are theentangledstates.

Suppose we start with a combined state of total spin 0 for the two particles, and we
measure the spin of the first particle (say, the electron) relative to a given choice of axis.
This will disentangle the state, so the result lies onQ. The choice of axis and orientation
determines a point and its conjugate on the conicC. The tangents to the conic at these points
intersect to form a third point off the quadric but in the plane of total spin 1, corresponding
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Fig. 8.Quantum entanglement. The quantum phase space of an electron–positron system contains a pointZ for
total spin 0, and a projective hyperplaneZ̄ for total spin 1. The disentangled states have indefinite total spin, and
comprise a quadricQ ∈ CP3 ruled by two systems (electron and positron) of linear generators. Once a spin axis
is chosen, the join ofZ with the state of total spin 1 andSz = 0 intersectsQ in a pair of points, corresponding to
the possible measurement outcomes of the spin of the electron relative to the axis.

to a triplet state of eigenvalue 0 relative to the axis. We join that state to the starting state
Z, and the resulting line intersectsQ at a pair of points, as shown in Fig. 8.

The two disentangled states thus obtained represent the possible measurement outcomes.
The quadricQ has two systems of generators, corresponding to the electron and positron
state spaces. Through each point ofQ there is a unique ‘electron generator’ and a unique
‘positron generator’. An electron generator represents a fixed electron state, each point on it
corresponding to a possible positron state. The two points constituting the possible outcomes
of the spin measurement of the electron have the property that their electron generators hit
respectively the two chosen points on the conic that define the spin axis. The measurement
result for which the electron generator hits the spin up state on the conic is the ‘electron
spin up and positron spin down’ outcome, whereas the other one is the ‘electron spin down
and positron spin up’ outcome. The argument outlined above are clearly relevant to the
formulation of a proper geometric treatment of the EPR problem, though in that situation
one must also take into account the further degrees of freedom associated with the geometry
of space–time.

In the case of a measurement upon a generic state, not necessarily of total spin 0, the possi-
ble resulting outcomes are constructed geometrically as follows. Without loss of generality,
we consider, in the present set-up, the measurement of the spin of the electron with respect
to a spin axis. The choice of the spin axis selects a pair of points on the conic inQ. Each
of these points determines a corresponding electron generator. The two electron generators
thus obtained do not meet. Now given a generic point and a pair of skew lines inCP3, there
exists a unique line through this point that intersects the two lines transversally. The line
thus obtained necessarily intersectsQ at two points, and these two points determine the two
possible measurement outcomes of the electron spin with respect to that choice of axis.

In a more general situation, the idea of the quantum entanglement of a system of particles
is characterised geometrically by the fact that complex projective space admits a Segre
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embedding (cf. [42]) of the form

CPm × CPn ↪→ CP(m+1)(n+1)−1.

Here we regard bothCPm and CPn as representing the state space of two subsystems,
respectively, whileCP(m+1)(n+1)−1 represents the state space of the combined system. One
can argue that this is the main feature of quantum mechanics that has no analogue is classical
physics. Classically, the state space of a combined system is given by the product of the
state spaces of the subsystems, which typically has much lower dimensionality than the
quantum state space of a combined system.

One should bear in mind that there are two distinct categories of order and disorder
that can enter into the characterisation of a multi-particle quantum system. One has to
do with thermalisation: the admixture of pure quantum states into a Gibbsian ensemble.
The other category of order–disorder relation is concerned with degree of entanglement.
The laws of thermodynamics must account for a general tendency towards both mixing as
well as disentanglement. The latter is in some respects more elusive, and it is not clear a
priori how to formulate a physical basis for the process of disentanglement, which does
not admit a simple description in the language of thermodynamics. One of the motivations
behind the present study is to establish a satisfactory framework for exploring this issue
further.

9. Measure of entanglement

The geometrical set-up indicated in the previous section suggests a methodology accord-
ing to which a measure∆(ψ) can be assigned to thedegree of entanglementexhibited by
a given pure stateψ . Let us consider, e.g., the case of a finite-dimensional two-particle
state spaceCPn containing a varietyVm ⊂ CPn, whereVm = CPj × CPk andn =
(j + 1)(k + 1) − 1. The varietyVm represents the disentangled states of the two parti-
cles, and is given by the product of the respective single particle state spacesCPj and
CPk.

We propose, as a measure of entanglement for a generic pure stateψ ∈ CPn, the use of
thegeodesic distance from the given stateψ to the nearest disentangled state. The distance
∆ is measured with respect to the Fubini–Study metric.

The choice of∆ is natural inasmuch as it depends only on the Segre embedding of the
variety V m and no additional structure apart from the given metrical geometry ofCPn.
Furthermore,∆ is invariant under any unitary transformation ofCPn that is also an auto-
morphism ofV m, i.e., ‘local’ transformations that preserve the disentangled state space.
This invariance is a key property for a measure of entanglement [14,59,79,85]. Essentially
the same construction applies to the case of entangled states of any number of particles. We
do not require that the particles are necessarily of the same type.

As an illustration, we consider in more detail the system described in Section 8 consisting
of two spin 1

2 particles, where the state space isCP3 and the spaceV 2 of disentangled
states is a quadricQ ⊂ CP3. Suppose we writeψAB for a generic state, and̄ψAB for the
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corresponding complex conjugate hyperplane. Then the minimal distance∆ from ψ toQ
is determined by the relationκ = 1

2(1 + cos∆), whereκ is the cross-ratio

κ = (ψABX̄AB)(X
CDψ̄CD)

(ψABψ̄AB)(XCDX̄CD)

andXAB ∈ Qmaximisesκ for the given stateψAB. The cross-ratioκ is the Dirac transition
probability from the stateψAB to the stateXAB. Our goal is to find the states onQ for which
the transition probability fromψAB is maximal, corresponding to a minimal Fubini–Study
distance.

We shall turn to the details of the maximisation problem in Section 10, but first we
present the solution and analyse its consequences. Let us writeψCD , εACεBDψ

AB and
ψ̄AB , εACεBDψ̄AB, where the antisymmetric spinorεAB satisfiesεABε

AC = δCB . Then the
solution forκ is κ = 1

2(1 + γ ), with

γ =
√

1 − (ψABψAB)(ψ̄CDψ̄CD)

(ψABψ̄AB)2
.

We note thatγ as thus defined is independent of the scale ofεAB and lies in the range
0 ≤ γ ≤ 1. The inequality satisfied byγ follows from a general result that for any element
z in a complex vector space with a Hermitian inner product we have the Hermitian inequality
(z · z̄)2 ≥ (z · z)(z̄ · z̄). This can be seen by writingz = a + ib, wherea andb are real,
and then checking that the purported relation reduces to the Schwartz inequality(a · b)2 ≤
(a · a)(b · b). Furthermore, we can verify thatγ is invariant under local transformations,
i.e., unitarity transformations of the formψAB → UACU

B
Dψ

CD, whereUAB is an element of
U(2). This follows as a consequence of the fact thatψABψAB → det(U)ψABψAB under a
local transformation where det(U) = εABU

A
CU

B
Dε

CD is evidently a pure phase.
If the pointψAB lies on the quadricQ, we haveψABψ

AB = 0, and henceγ = 1, which
impliesκ = 1, from which it follows that the distance to the quadric is∆ = 0. On the other
hand, for a maximally entangled state the inequality is saturated atγ = 0, and thus gives
κ = 1

2, which implies∆ = π/2.
The interpretation of this result is as follows. We recall that for orthogonal states the

Fubini–Study distance isπ , the greatest distance possible. On the other hand, the maximum
distance an entangled state can have from the closest disentangled state, in the case of two
spin 1

2 particles, isπ/2. For example, with respect to a given choice of spin axis, the spin
0 singlet stateεAB can be expressed as an antisymmetric superposition of two disentangled
states, i.e., an up-down state and a down-up state. The two disentangled states are mutually
orthogonal, and the singlet state lies ‘half way’ between them.

10. Maximal and sub-maximal entanglement

There is a well-known construction in algebraic geometry according to which a proper
quadric locus inCP3 induces apolarityon this space, a one-to-one correspondence between
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points and planes. Reverting briefly to the notation of Section 3, let us writeψα for the ho-
mogeneous coordinates of a point inCP3, andQαβψ

αψβ = 0 for the quadric (cf. [53]). We
assume that the quadric is nondegenerate in the sense that det(Qαβ) 6= 0. Then for any point
ξα ∈ CP3 it follows that ξ̃α , Qαβξ

β is nonvanishing. The locus consisting of all points
ψα such that̃ξαψα = 0 defines thepolar planeof the pointξα with respect to the quadric
Qαβ . SinceQαβ is nondegenerate, there is a unique inverseQαβ satisfyingQαγQ

γβ = δ
β
α ,

and thus for any planeηα in CP3 we can define a polar point̃ηα , Qαβηβ . The operation
is involutory in the sense that the polar point of the polar plane of a given point is that point.

The polar plane of a pointξ can be constructed as follows. LetL be an arbitrary line
throughξ . ThenL intersectsQ twice at, say, pointsA andB. Now suppose we consider
the harmonic conjugateξ∗ of ξ , on the lineL, with respect to the pointsA andB. This is
the unique pointξ∗ onL for which we have the cross-ratio{ξ, ξ∗;A,B} = −1. Then, as
we varyL, the locus ofξ∗ sweeps out a plane, and this is the polar planeξ̃ . The polar plane
ξ̃ intersectsQ in a conicC with the property that any line drawn fromξ to C touchesQ
tangentially. Conversely, if we consider all the lines throughξ that touchQ tangentially,
then the union of the intersection points is the conicC, which lies in a unique plane, the polar
planẽξ . A point lies on its polar plane iff the point itself lies on the quadric, in which case the
polar plane of the point is the tangent plane at that point. In that case, the conicC degenerates
into a pair of lines, given by the two generators of the quadric through the given point.

In the quantum mechanical situation we require further that the quadricQαβ be Hermitian,
or ‘self-conjugate’, in the sense thatQαβ = Q̄αβ andQαβ = Q̄αβ . This ensures that the
complex conjugate ket-vector of the polar bra-vectorζ̃α of a given ket-vectorζ α agrees
with the polar ket-vector of the complex conjugate bra-vectorζ̄α of the given ket-vectorζ α.
It follows that complex conjugate ket-vector of the polar bra-vector of a disentangled state
is also disentangled, and that the polar ket-vector of the complex conjugate bra-vector of a
disentangled state is disentangled.

The geometry of a self-conjugate quadric applies to the consideration of any pair of
two-state systems, whether or not these systems are of the same type. For example, we
might consider a toy model in which a lepton is regarded as a composite consisting of a
neutral spin1

2 particle and a spin 0 flavour doublet that determines whether the lepton is an
electron or a muon. Then one might explore the properties of the entangled state given by a
superposition of a spin-up electron with a spin-down muon, the spin state being given with
respect to some choice of axis. What distinguishes the state space of a pair of spin1

2 particles
is the existence of a preferred singlet stateZα. This state is required to be self-conjugate
polar with respect to the quadric in the sense thatZ̄α = QαβZ

β .
We now present a geometrical construction for the supremum of the cross-ratioκ under

the given constraint. Given the entangled stateψα we wish to find the stateXα ∈ Q that
maximises the cross-ratio

κ = (ψαX̄α)(X
βψ̄β)

(ψαψ̄α)(XβX̄β)
.

Suppose we definēψα , Qαβψ̄β , the polar state of the complex conjugate hyperplaneψ̄α.
Then we can show that the states onQ that are maximally and minimally distant to the
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Fig. 9.Construction of the nearest and furthest disentangled states. Given any entangled stateψα we can form
another statẽψα given by the complex conjugate of̃ψα , the polar conjugate plane ofψα with respect to the quadric
Q. Providing thatψα is not maximally entangled, the pointsψα andψ̃α are distinct, and the points onQ closest
to and furthest fromψα are given by the intersection pointsXα andX̄α of Q with the line joiningψα andψ̃α .

given stateψα are collinear withψα, and are complex conjugate polar to one another in
the sense thatψα has to be of the form

ψα = pXα + qQαβX̄β,

whereXα is the point onQ closest toψα, so |p| ≥ |q| (see Fig. 9). This can be verified,
e.g., by maximisingκ with respect toXα subject to the constraintQαβX

αXβ = 0, using a
Lagrange multiplier technique. Then if we defineλ = p/q it follows by a direct substitution
that

κ = λλ̄

1 + λλ̄
.

Sinceλλ̄ ≥ 1, we deduce, further, that1
2 ≤ κ ≤ 1. On the other hand, we can also verify

by direct substitution that the invariantρ defined by

ρ = (Qαβψ
αψβ)(Q̄γ δψ̄γ ψ̄δ)

(ψγ ψ̄γ )2
,

which is independent of the scale ofQαβ , depends onp andq only throughλ, and is given
by the formula

ρ = 4λλ̄

(1 + λλ̄)2
.

Then it is not difficult to see thatκ is indeed of the desired formκ = 1
2(1 + γ ) with

γ = √
1 − ρ. That establishes the the validity of the expression indicated earlier for the

minimum distance∆ = cos−1 γ from the given stateψα to the quadric of disentanglement.
Suppose we consider the case of sub-maximally entangled states. In this situation

the relation betweenψα andXα is invertible, since providing| λ |>1 there exist complex
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numbersr ands such that

Xα = rψα + sQαβψ̄β .

We can solve this for the ratioµ = r/s by imposing the conditionQαβX
αXβ = 0, leading

to the quadratic equationµ2Qαβψ
αψβ + 2µψαψ̄α + Q̄αβψ̄αψ̄β = 0, for which the roots

are given by

µ = −1 ± √
1 − qq̄

q
,

whereq , Qαβψ
αψβ/ψγ ψ̄γ . The positive root gives the point onQ nearest toψ , and the

negative root gives the most distant disentangled state, as illustrated in Fig. 9. We note that
the terms here are so constructed that the solution forXα is independent of the overall scale
and phase ofψα, as expected.

The maximallyentangled states are those for which|λ| = 1, for which apart from an
overall irrelevant scale factorψα is thus necessarily of the form

ψα = eiθXα + e−iθQαβX̄β.

Such states are self-conjugate in the sense thatψ̄α = Qαβψ
β . Conversely, given any dis-

entangled stateXα we see that there exists a one-parameter family of maximally entangled
states at a distanceπ/2 from it. This one-parameter family is given by the equatorial circle
of the complex projective line obtained by joiningXα to the conjugate disentangled state
QαβX̄β , to whichXα is orthogonal.

Thus, e.g., ifXAB = ξAηB is a disentangled state of two spin12 particles, then we
obtain the one-parameter family of maximally entangled states given byψAB = eiθ ξAηB +
e−iθ ξ̄Aη̄B , whereξ̄A , εABξ̄B andη̄B , εBAη̄A. For any value ofθ these states are at a
distance ofπ/2 fromXAB.

A special case of interest arises whenηB = ξ̄ B andη̄A = −ξA. In that case, reverting
to the notation of the previous section, we haveψAB = eiθψAψ̄B − e−iθ ψ̄AψB . Then for
θ = 0 we obtain the spin 0 singlet state for whichψAB ∝ εAB; whereas forθ = π we get
theSz = 0 spin 1 triplet state for whichψAB ∝ ψ(Aψ̄B) (see Fig. 10).

More generally, ifψα is anarbitrary maximally entangled state, then consider the conic
K that arises when we intersect the planeψ̄α with the quadricQ. This conic is conjugate
self-polar in the sense that for any pointπα onK the complex conjugate planēπα is tangent
to the quadric at a point̄πα onK. Now, suppose we consider the locusL of points generated
by the intersection of the tangent lines toK atπα andπ̄α in the planeψ̄α as we varyπα.
For any pointP in L the join of that point withψα intersectsQ in a pair of pointsXα and
X̄α, both of which are at a distance∆ = π/2. By varyingP we obtain all points onQ at a
distanceπ/2 fromψα.

11. Schrödinger evolution

As the examples above indicate, the geometry of quantum mechanics is very rich, once
specific physical systems are brought into play, even when there are only a few degrees
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Fig. 10.Maximally entangled states. TheS = 0 singlet and anSz = 0 triplet state for some choice ofz-axis are
joined by a complex projective line that intersectsQ in a pair of disentangled states. The singlet and triplet states
lie on an equatorial circle at a distance ofπ/2 from the disentangled states which are orthogonal to one another
and thus lie on opposite poles. All the points on this equatorial circle are maximally entangled. The locusL of the
entangled triplet states corresponding to different spatial directions is topologically equivalent to a sphere with
opposite points identified, i.e.,RP2. The conicC onQ, which has the topology of a sphereS2, is the covering
space of this locus. Hence the space of maximally entangled states thus constructed has a cone-like structure,
obtained by joining each point ofL to the unique singlet stateS = 0, the join in each case being given by the
corresponding equatorial circle.

of freedom. This picture can be further developed by consideration of the dynamics of a
quantum system, which can be pictured as a vector field on the state manifold. Such a vector
field generates a symmetry of the Fubini–Study geometry, i.e., an action of the projective
unitary group.

In the case of an(n + 1)-dimensional Hilbert space, the state space isCPn, which can
be viewed as a real manifoldΓ of dimension 2n, with a symmetry group generated by a
family of n(n + 2) Killing vector fields. The generic Killing field onΓ hasn + 1 fixed
points, corresponding to the eigenstates of a nondegenerate Hamiltonian.

In the case of a two-dimensional Hilbert space, the state space isCP1, and the specification
of a Killing field selects out a pair of polar points onS2, corresponding to energy eigenstates
E0 andE1. The relevant symmetry is then given by a rigid rotational flow about this axis,
the angular frequency being determined by Planck’s formulaE1 −E0 = ~ω. For a general
state spaceCPn, in the generic situation, where the Hamiltonian is nondegenerate, with
n+ 1 distinct eigenvalues, then+ 1 fixed points of the given Killing field are linked by a
figure consisting of12n(n+1) spheres, for which the fixed points act as polar points, in pairs.
These fixed points form the vertices of a regular simplex inCPn, and under the action of
the Killing flow the spheres linking these vertices rotate respectively with the characteristic
angular frequencies

Ei − Ej = ~ωij ,
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whereEi (i = 0,1, . . . , n) labels the energy ofith eigenstate. The dynamical trajectories in
Γ are determined by the specification of the fixed points, along with the associated angular
frequencies. Even in the case of a simple spin 1 system, the geometry of the state space is
intricate, given by a four-dimensional real manifold containing a system of three 2-spheres
touching one another at the poles, and spinning at three distinct frequencies.

If the frequencies are incommensurate, i.e., not rational multiples of each other, then the
Killing orbits do not close except on the three special spheres, and the generic dynamical
trajectory, starting from some initial point in the state space, is doomed to evolve to eter-
nity without ever returning to its origin. This raises the interesting question of whether the
quantum trajectories exhibit some sort of ergodic property on the state space.

12. Quantum energy surfaces

In order to pursue this question further, let us consider the foliation of the 2n-dimensional
manifoldΓ 2n by level surfaces of constant energy. The ‘energy’ here is given by the expec-
tation of the Hamiltonian operator. For simplicity we consider here, specifically, the case
of a nondegenerate Hamiltonian with eigenvaluesEi (i = 0,1,2, . . . , n). The foliation
corresponding to such a Hamiltonian contains two degenerate folia, associated with the
extremal eigenvaluesE0 andEn, for which the energy surfaces reduce to points. For values
of E such thatE0 < E < E1 or En−1 < E < En, the energy surfaces are topologically
equivalent to spheresS2n−1 of dimension 2n − 1, endowed with a Riemannian geometry
induced by the Fubini–Study metric.

For intermediate values of the energy, the resulting surfaces are more intricate, and are
best perhaps considered on a case by case basis. If 0< j < n, then forEj < E < Ej+1, the
resulting manifold is given by a hyperboloid inR2n of a certain signature, compactified by
some spherical structure at infinity. The signature is given by{2(n−j),2j} for 0< j < 1

2n,
and by{2(j + 1),2(n − j − 1)} for 1

2n ≤ j < n. The intrinsic Riemannian structures of
these surfaces, as well as the extrinsic embedding curvature, depend on the ratios of the
energy differences(Ei − E)/(Ej − E) for i, j = 0,1, . . . , n.

WhenE takes an eigenvalueEk, the energy surface is singular at the pointpk correspond-
ing to the eigenstate with that eigenvalue. Thus, asE is increased we obtain a remarkable
parametric family of manifolds punctuated by singular configurations, corresponding to the
passage ofE through its eigenvalues. In particular, the topological structure of the energy
surface changes asE is increased fromE0 toEn. We can view each of the structures thus
arising as the topological phase associated with the given energy levelE. If we also include
the singular surfaces at the eigenvalues as different topological phases, then for a generic
nondegenerate Hamiltonian with(n + 1) eigenvalues, the energy folia admitsn distinct
topological phases.

For a Schrödinger evolution, the energy is clearly conserved, corresponding to the fact
that the Killing trajectory associated with a given Hamiltonian necessarily lies in a level
surface of that Hamiltonian. It follows, furthermore, that the resulting flow on a given such
surface is an isometry of the Riemannian metric induced on that surface. Given an initial
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state on a generic energy surface, the Killing trajectory is necessarily confined to a subfolium
of dimensionn that is topologically ann-torusT n. The Killing trajectories that do not close
thus exhibit a quasi-ergodic property on these toroidal subfolia.

Consider, e.g., the case ofCP2, for which the underlying geometry is already quite
sophisticated (cf. [45]). Let us writeψα for a generic point andZαi (i = 0,1,2) for the
eigenstates of a nondegenerate Hamiltonian, andEi (i = 0,1,2) for the corresponding
eigenvalues, in ascending order. Then for the energy surface with energyE we have

E = E0ψ0ψ̄0 + E1ψ1ψ̄1 + E2ψ2ψ̄2

ψ0ψ̄0 + ψ1ψ̄1 + ψ2ψ̄2
,

whereψi , ψαZ̄iα andψ̄i , ψ̄αZ
α
i are the components ofψα andψ̄α, respectively, in a

basis determined by the energy eigenstatesZαi (i = 0,1,2).
Suppose that the energyE lies in the rangeE1 < E < E2. Then the equation for

the energy surface can be rearranged in the form(E − E0)ψ0ψ̄0 + (E − E1)ψ1ψ̄1 =
(E2 −E)ψ2ψ̄2. BecauseE−E0 andE−E1 are both by assumption positive, and because
ψ0 andψ1 cannot both be zero, it follows that the relevant energy surface necessary lies in
the region ofCP2 such thatψ2 6= 0, i.e., an open region topologically equivalent toR4. As
a consequence we can divide byψ2 to obtain

E − E0

E2 − E
αᾱ + E − E1

E2 − E
ββ̄ = 1,

whereα = ψ0/ψ2 andβ = ψ1/ψ2. The resulting energy surface is thus topologically a
3-sphere, and is given explicitly by a 3-ellipsoid in theR4 geometry coordinatised by the
complex pairα, β.

Now we are able to consider more explicitly the Schrödinger trajectories, which in this
example are given by

α(t) = ei~(E0−E2)tα0, β(t) = ei~(E1−E2)tβ0

and thus generate a toroidal submanifold of the given 3-surface, provided bothα0 andβ0 are
nonvanishing. Furthermore, the resulting family of toroidal surfaces can be parameterised
by |α|, which lies in the range 0< |α| < (E2 − E)/(E − E0). The limiting values of this
range correspond to degenerate tori (circles); this situation arises when the initial state is
orthogonal either toZα0 or Zα1 , because the resulting Schrödinger evolution is necessarily
confined to the projective line.

WhenE = E1, the system is either in its eigenstatep1, whereψ0 = ψ2 = 0, or otherwise
we have(E1 −E0)ψ0ψ̄0 = (E2 −E1)ψ2ψ̄2 andψ1 arbitrary. In the latter caseψ0 andψ2

are both necessarily nonvanishing, and we can divide byψ2 to obtain

E1 − E0

E2 − E1
αᾱ = 1.

This determines a circleS1, while the arbitrariness ofψ1 implies thatβ can be written in
the formβ = r eiφ for some realr andφ. Thus the energy surface associated withE = E1
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Fig. 11. Foliation of the state space CP2 by energy surfaces. The quantum state spaceΓ is foliated by level
surfaces of the expectation of the Hamiltonian operator. The Schrödinger evolution preserves the energy of a given
initial state, and the resulting dynamical trajectory is confined to ann-torusT n. If the ratiosEi/Ej of the energy
eigenvalues are irrational, then the trajectory onT n does not close. Here we illustrate the example ofCP2. In the
case of a generic surface associated with the energy levelsE0 < E < E1 andE1 < E < E2, the surfaces are
3-ellipsoids, while forE = E1 the surface has a conical singularity at the eigenstatep1.

is singular, and can be viewed as a coneK3 with the structureK3 = (S1 ×R2)+ p1, where
p1 is the singular point.

In particular, if we take the complex projective line joining the extremal eigenstatesp0
andp2, then there is a special circle on this projective line containing states for which
the expected energy is the same as the eigenvalueE1. Then the entire energy surface for
E = E1 is obtained by joining each point on this special circle to the pointp1. The joins thus
obtained are each topological spheres, with a common intersection atp1. If we deletep1,
then the punctured spheres separate, and we are left with the productS1×R2. The topology
change of the energy surface, asE evolves fromE0 to E2, therefore, can be conveniently
expressed as a topological sequence of the form

p→ S3 → S1 × R2 + p→ S3 → p,

wherep denotes a point. This situation is illustrated in Fig. 11.
The situation in higher dimensions is rather more elaborate, but can be pursued by es-

sentially the same kind of reasoning. It is worth noting that the role of the energy surfaces
is significant in quantum statistical mechanics, and that the points raised above may thus
be of relevance in that context as well.

13. Quantum Hamiltonian dynamics

This line of argument can be taken further by studying the quantum trajectories onΓ by
use of differential geometry. When viewed as a real manifold, the state space is endowed
with a Riemannian structure, given by a positive definite symmetric metricgab, a symplectic
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structure, given by an antisymmetric tensorΩab, and a complex structure, given by a tensor
J ab , satisfying

J ac J
c
b = −δab .

These structures are required to becompatiblein the sense thatΩab = gacJ
c
b and∇aJ bc =

0, where∇a is the covariant derivative associated withgab. Here we use Roman indices
(a, b, . . . ) for tensorial operations in the tangent space ofΓ . The compatibility ofgab,Ωab

andJ ab makesΓ a Kähler manifold. The existence of a Hamiltonian structure on the Hilbert
spaceH was pointed out by Chernoff and Marsden [31]. In the infinite-dimensional case it
suffices, for some purposes, to make use of the fact that the metricgab and the symplectic
structureΩab are at leastweaklynondegenerate in the sense that for any vector fieldsξa, ηa

onΓ , ξagab = 0 impliesξa = 0 andηaΩab = 0 impliesηa = 0. The fact that in infinite
dimensions the Fubini–Study metric and symplectic structure arestronglynondegenerate
[60] means that many of the geometrical constructions valid in finite dimensions carry
through to the general quantum phase space.

The additional ingredient required for the specification of the dynamics is a Hamiltonian
functionH(x) on Γ . Then the general dynamical trajectories onΓ are determined by a
relation of the form

1
2~Ωab dxb = ∇aH dt.

The Schrödinger trajectories onΓ are given by a subclass of the general Hamiltonian tra-
jectories, namely, those for which the Hamiltonian functionH(x) is of the special quantum
mechanical form

H(x) =
ψ̄α(x)H

α
β ψ

β(x)

ψ̄γ (x)ψγ (x)
.

Here, as before,ψα(x) denotes a set of homogeneous coordinates for the corresponding
pointx in the projective Hilbert space. We see that for a Schrödinger trajectory,H(x) is the
expectation of the Hamiltonian operator in the pure state to which the pointx corresponds.
In contrast with classical mechanics, where the phase space typically has an interpretation
in terms of position and momentum variables, in quantum mechanics the points in phase
space correspond to pure quantum states.

Quantum observables are intimately related to the metrical geometry ofΓ . The distin-
guishing feature of a quantum Hamiltonian functionH(x) is that the associated symplectic
gradient flowξa = dxa/dt is a Killing field, i.e.,∇(aξb) = 0. Indeed all Killing fields onΓ
arise in this way through quantum observables. It is important to note that the Killing flows
onΓ are necessarily Hamiltonian (cf. [66]). The Killing fields generate the symmetries of
the Fubini–Study metricgab.

In the case of finite dimensions, we can say more about the quantum observables that
generate isometries on the Fubini–Study manifold. IfH(x) corresponds to a standard linear
observable, then in finite dimensions it is necessarily defined globally onΓ . One can show
that such functions correspond to global solutions of the characteristic equation
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∇2H = (n+ 1)(H̄ −H),

where∇2 is the Laplace–Beltrami operator onΓ , H̄ = Hα
α /(n+ 1) is the uniform average

of the eigenvalues ofHα
β , and 2n is the real dimension ofΓ . Conversely, if we are given

a Killing field ξa , the corresponding observable functionH(x) can be recovered, up to an
additive constant, via the relation

1
2~Ω

ab∇aξb = (n+ 1)(H − H̄ ),

which follows directly from the characteristic equation if we make use of the compatibility
conditiongabΩ

acΩbd = gcd along with the fact that12~ξa = gabΩ
bc∇cH . We note, inci-

dentally, that in the Kibble–Weinberg theory, a general nonlinear quantum observable is a
function onΓ such that the characteristic equation isnotnecessarily satisfied. As a conse-
quence, the corresponding symplectic gradient flow is no longer necessarily a Killing field.

Now we are in a position to confirm the remark made in the previous section that the
Schrödinger flow, when restricted to a given energy surface, will generate an isometry of
that surface. This can be verified by showing that the Lie derivative

Lξ hab = ξc∇chab + hcb∇aξc + hac∇bξc

vanishes, where12~ξ
a = Ωab∇bH is the Schrödinger flow and

hab = gab − ∇aH∇bH
∇cH∇cH

is the induced metric on the given energy surfaceH(x) = E. A calculation then shows
that the desired result follows as a consequence of the fact thatξa is a Killing vector of the
Fubini–Study metric, and that the energy uncertainty is a constant of the motion along each
Schrödinger trajectory.

14. Uncertainty relations and geometric phases

The metrical geometry ofΓ also plays a significant role in determining the statistical prop-
erties of observables. For example, in the pure statex the squared uncertainty (variance) of
a quantum mechanical observable represented by the functionF(x) is (∆F)2 = gabF

aFb,
whereFa is the unique gradient vector field satisfyinggabF

b = ∇aF . This leads to the
following interpretation of quantum mechanical uncertainty. We foliateΓ with surfaces
given by level values ofF(x). We allow the foliation to be ‘singular’ in places, e.g., at the
energy eigenstates, where the energy surfaces are degenerate.

Through a given pure statex there is a unique such surface, and the uncertainty∆F is
the length of the gradient vector to that surface atx (see Fig. 12). The observablesF(x)
andG(x) are incompatible if their Poisson bracket [F,G] = ΩabF

aGb is nonvanishing.
In that case the Heisenberg uncertainty relation

(∆F)2(∆G)2 ≥ 1
4|[F,G]|2
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Fig. 12.The observable uncertainty. The quantum phase spaceΓ is foliated locally by level surfaces of the function
F(x). The quantum uncertainty in the corresponding observable, in the pure statex, is given by the magnitude of
the gradient ofF(x) at that point.

follows directly as a consequence of the geometric inequality

(gabF
aFb)(gabG

aGb) ≥ (gabF
aGb)2 + 1

4(ΩabF
aGb)2,

if we omit the first term in the right-hand side. This inequality, which follows as a conse-
quence of the standard argument for the Hermitian Schwartz inequality in Hilbert space,
holds for any vector fieldsFa andGa on a Kähler manifold. Note that the omitted term
gabF

aGb gives rise to the anticommutator of the observablesF andG.
The geometrical approach to uncertainty here ties in closely with the statistical idea of

the Cramér–Rao inequality for the variance lower bound in estimation theory (cf. [49,80]).
In the case of a pair of canonically conjugate observablesP(x) andQ(x) defined on an
appropriate region ofΓ , satisfying [P,Q] = ~, we can expand the gradient to the surfaces
of constantQ(x) in a suitable basis to obtain a series of generalised Heisenberg relations
[18–21], an example of which is

(∆P )2(∆Q)2 ≥ 1

4
~

2
(

1 + (µ4(P )− 3µ2(P )
2)2

µ6(P )µ2(P )− µ4(P )2

)
,

whereµk(P ) = 〈(P − 〈P 〉)k〉 is thekth central moment of the observableP in the state
x. This inequality has the following statistical interpretation. Suppose that we are given an
unknown quantum state of a particle, parameterised by its positionq, and that we wish to
estimate the position of the particle by a suitable measurement. The observable function
corresponding to the parameterq is then given byQ, and the statistical estimation ofq via
measurement onQ gives rise to an inevitable variance lower bound, expressed in terms of a
certain combination of the momentsµk(P ) of the momentum distribution associated with
the given state. Likewise, if we consider momentum estimation, then the corresponding
variance lower bound is given by the moments of the positionQ.
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Fig. 13.The Anandan–Aharonov relation. The quantum evolution of a two-state system corresponds to the rigid
rotation of a 2-sphere with angular frequency~ω = E2 −E1. The speed of the trajectory is greatest at the equator,
which consists of states of maximal energy uncertainty.

An interesting interplay between the quantum dynamical trajectories and the uncertainty
relations was pointed out by Anandan and Aharonov [8]. In particular, it follows from
the projective Schrödinger equation1

2~Ωab dxb = ∇aH dt and the expression for the line
element ds2 = gab dxa dxb that the ‘speed’ in the state spaceΓ along the dynamical
trajectory at the pointx is

1

2
~

ds

dt
= ∆H,

where∆H is the energy uncertainty in the given state. For example, in the case of a two-state
system with eigenstates at the poles of a 2-sphere, the quantum evolution corresponds
to a rigid rotation of the sphere, with constant angular frequency, for which the speed
is greatest at the equator, corresponding to states of maximum uncertainty (as shown in
Fig. 13).

This result is related to properties of thegeometric phaseintroduced by Berry and sub-
sequently applied in many situations [6,7,15,84,86,89–93]. Consider a closed pathγ in the
quantum phase space. Ifγ is a standard dynamical trajectory, then it corresponds to a closed
Killing orbit, but we shall allow for the possibility of more general paths, e.g., as might be
generated by a time-dependent Hamiltonian operator. The geometric phase associated with
such a cyclic evolution is given by the integral

β[γ ] =
∫
Σ

Ωab dxa ∧ dxb,

whereΣ is any real 2-surface inΓ such thatγ = ∂Σ . Owing to the relation∇aΩbc = 0, it
follows from Stokes’ theorem that the value ofβ[γ ] is independent of the choice of surface
Σ spanning the loopγ , and can be given the following interpretation.

The punctured Hilbert spacẽH = H−{0}, with the origin deleted, is a fibre bundle over
Γ . Therefore, given a trajectoryγ in Γ , we can form a corresponding trajectoryP−1[γ ]
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in H̃, called the horizontal lift ofγ . This is obtained by solving themodifiedSchrödinger
equation

i~
∂ψα

∂t
= (Hα

β − E[H ]δαβ )ψ
β,

whereE[H ] is the expectation of the Hamiltonian in the stateψα. Despite its nonlinearity,
the modified Schrödinger equation is physically natural inasmuch as its stationary states are
energy eigenstates. In this connection, it is worth drawing attention to the fact that in the
case of the modified Schrödinger dynamics, the time-independent Schrödinger equation

Hα
β ψ

β = E[H ]ψα

follows directly from the stationary state requirement, without the introduction of the
so-called correspondence principleE[H ] ↔ i~∂t .

The horizontal lift is characterised by the condition that the tangent to the curveP−1[γ ]
in H̃, given by∂ψα/∂t , is orthogonal to the fibre directionψα, so we havēψα∂ψα/∂t = 0.

In the case of a closed loopγ , β[γ ] measures the phase change inψα over the corre-
sponding circuit inP−1[γ ]. If the given loopγ in Γ subsequently evolves in time, then
β[γ ] is a quantum mechanical analogue of the Poincaré integral invariant (cf. [2,9]), as
illustrated in Fig. 14. We note, incidentally, that the notion of geometric phase discussed
here also applies to nonlinear quantum mechanics, for which the HamiltonianH(x) does

Fig. 14. The horizontal lift of a quantum trajectory and Poincaré’s invariant integral. The Berry phaseβ[γ ]
associated with a general cyclic trajectoryγ in the quantum phase spaceΓ is given by the integral of the symplectic
formΩab over a 2-surfaceΣ spanningγ . This integral measures the phase change that develops in the horizontal
lift of γ to the corresponding pathP−1[γ ] in the Hilbert bundleH̃ overΓ . If the cyclic trajectory subsequently
evolves unitarily in time, thenβ[γ ] is the quantum analogue of the integral invariant of Poincaré, and we have
β[γ1] = β[γ2]. This result is valid even if we relax the unitarity condition and consider nonlinear dynamics of the
Kibble–Weinberg type.
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not satisfy the characteristic equation for linear observables. The role of the geometric phase
in both linear and nonlinear quantum mechanics continues to be explored.

15. Mixed states

Phase-space geometry sheds some light on the peculiar role of probability in quantum
mechanics. For a review of the current status of the relation between classical and quantum
probability, see, e.g., [87]. For many purposes it suffices to characterise the state of a
quantum system by its density matrix, which allows one to compute the expectation of any
observable. The question is, is this sufficient forall purposes? In this connection we note
that there are at least two situations where it is useful to consider probability distributions
on the state manifoldΓ itself. One is in the description of the statistical properties of a
measurement outcome; the other is the representation of ensembles in quantum statistical
mechanics.

In both cases, the state of the system can be characterised by a probability density function
or measureρ(x) onΓ , in terms of which the expectation of any functionF(x) onΓ can
be written

E[F ] =
∫
Γ

ρ(x)F (x)dx.

We think ofF(x) as representing the expectation of the corresponding (possibly nonlinear)
observable,conditionalon the system being in the pure statex. ThenE[F ] is theuncondi-
tional expectation, where we averageF(x) over the pure states, weighting with the density
ρ(x). A pure state arises ifρ(x) is aδ-function concentrated on a point inΓ . Consider the
example of a measurement where initially the system is in a pure stateX, and the observ-
able has a finite number of eigenstates, as in the case of a spin 1 system when we measure
the spin along an axis. The result of this measurement is one of the three spin eigenstates,
and these arise with probabilities determined by the Fubini–Study distance. The density
functionρ(x) for the state of the system after a measurement is given by a sum of three
δ-functions, concentrated at the eigenstates, weighted by these probabilities.

In the case of alinear quantum observable, the unconditional variance ofF(x) in a
general mixed stateρ(x) is given by

V [F ] =
∫
Γ

ρ(x)(F (x)− E[F ])2 dx +
∫
Γ

ρ(x)(gabF
aFb)2 dx.

A further simplification emerges by virtue of the special form of a linear observable, for
which we haveE[F ] = ραβF

β
α , where

ραβ =
∫
Γ

ρ(x)
ψ̄β(x)ψ

α(x)

ψ̄γ (x)ψγ (x)
dx

is thedensity matrixassociated withρ(x). The infinite-dimensional analogue of this formula
has been established by Cyranski [36]. For the calculation of expectations in ordinary linear
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quantum mechanics it suffices to consider the density matrix alone, since all such statistical
quantities calculated withρ(x) reduce to expressions involvingραβ . Therefore, for certain
purposes we can regardραβ itself as offering a complete representation of the state of
the system. Indeed, a considerable literature now exists analysing various aspects of the
geometry of the space of density matrices (see, e.g., [37,38,59,75,89–93], and references
cited therein).

One should bear in mind, however, that the density matrixραβ , which is the lowest moment
of the projection operator in the stateρ(x), does not in general contain all the information
of the system when we are dealing with nonlinear observables. This follows from the fact
that the information of a generic stateρ(x) is contained in the set ofall the moments (cf.
[25,63]). In the case of a nonlinear observable, we must consider a general stateρ(x), pure
or mixed, because the density matrix is not sufficient to take the expectation of such an
observable. Some specific examples of nonlinear observables have been studied, e.g., by
Weinberg [95,96]. The entanglement measure∆ introduced in Section 9 provides another
interesting example of a nonlinear observable arising in a natural context. Indeed, now we
are able to examine the issue of entanglement as it applies to mixed states. This is an area of
investigation of considerable current interest (cf. [50,59], and references cited therein), and it
has a natural characterisation in the geometrical approach. More specifically, given a general
mixed stateρ(x) on the quantum state space, the associated measure of entanglement is
given by the expectation

∆(ρ) =
∫
Γ

ρ(x)∆(x)dx,

which is invariant under local unitary transformations that preserve the disentangled state
space. The exclusive consideration of the density matrix in a nonlinear setting can lead to
paradoxical conclusions, such as the possibility of superluminal EPR communication (cf.
[46,47,78]).

Given a general stateρ(x, t)and a HamiltonianH(x), the evolution ofρ(x, t) is governed
by the Liouville equation,

1

2
~
∂ρ

∂t
= Ωab∇aρ∇bH,

where the Poisson bracket betweenρ(x, t) andH(x) is determined by the symplectic
structureΩab onΓ . In the case where the Hamiltonian is a linear quantum observable, the
Liouville equation is equivalent to the standard Schrödinger dynamics associated with a
mixed stateρ(x, t). On the other hand, if the Hamiltonian is a nonlinear observable, then
the Liouville equation no longer corresponds to a linear Schrödinger evolution.

It is interesting to note, nevertheless, that, contrary to what has been argued in literature
(cf. [74]), in the case of nonlinear quantum mechanics of the Kibble–Weinberg type, the
quantum Shannon entropy

S(ρ) = −
∫
Γ

ρ(x, t) ln ρ(x, t)dx
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associated with a general mixed stateρ(x, t) remains constant in time (cf. [97]). This result,
which is insensitive to the specific functional form ofS(ρ), follows as a consequence of the
Liouville equation forρ(x, t). One can also show [25] that, given the information of the
density matrixραβ , the corresponding quantum Shannon entropy obtained by maximising
S(ρ) is generally different from the von Neuman entropy.

More generally, the definition of entropy and equilibrium in quantum statistical mechan-
ics brings up conceptual issues, since, like the quantum measurement problem, it involves
the interface of microscopic and macroscopic physics. There is also a relationship to funda-
mental issues in probability theory. Suppose we consider a quantum system characterised
by a state spaceΓ and a Hamiltonian functionH(x) with discrete, possibly degenerate
energy levelsEj (j = 1,2, . . . , N). Let us writeδj (x) for a normalisedδ-function onΓ
concentrated on the pure statexj with energyEj . Thus,xj is thej th energy eigenstate. Then
if the quantum system is in equilibrium with a heat-bath at inverse temperatureβ = 1/kT,
the state of the system is evidently of the form

ρ(x) =
∑
jexp(−βEj )δj (x)

Z(β)
,

whereZ(β) = ∑
jexp(−βEj ) is the partition function. This is the canonical distribution

of quantum statistical mechanics, characterised by a Gibbs distribution concentrated on
the energy eigenstates with Boltzmann weights exp(−βEj )/Z(β). The standard canonical
density matrix associated with this distribution isραγ = exp(−βHα

γ )/Z(β), which is clearly
independent of the phase and scale of the underlying energy eigenvectors, and thus can be
regarded as belonging to the geometry ofΓ .

16. Quantum theory and beyond

There is an element of paradox at the heart of statistical mechanics, related to the fact that
there are many distinct probability distributions onΓ that give rise to the canonical density
matrix. A natural question to ask, therefore, is whether there exists a ‘preferred’ density
function onΓ for the canonical ensemble. In the case of classical mechanics, the maximum
entropy argument ‘selects’ a preferred distribution subject to the given constraints. It is
interesting therefore that when applied to quantum mechanics, this argument leads to a
quantum canonical ensemble characterised by the measure

ρ(x) = exp(−βH(x))∫
Γ

exp(−βH(x))dx

rather than the system of weightedδ-functions concentrated on energy eigenstates indicated
earlier [22,23]. However, the maximum entropy ensemble onΓ projects to a density matrix
quite distinct from the canonical density matrix. It may be that in the limit of a large
number of constituents there is an equivalence of ensembles, analogous to that arising in
classical statistical mechanics. The point here is that, even if the macroscopic energy of
a substance in thermal equilibrium with a fixed heat-bath is specified, there is no known
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principle that requires the individual subconstituents of that substance to be in energy
eigenstates. Could it be that in some situations there exists a mechanism that causes systems
to spontaneously devolve to energy eigenstates? A promising example of such a mechanism
is the energy-based stochastic state vector reduction process considered by Gisin [46],
Percival [73], Hughston [52], and Adler and Horwitz [3].

A further reason for the consideration of general probability distributions onΓ is that
such states are necessary for an account of the statistical properties of observables in non-
linear quantum systems. These systems were given a general characterisation by Kibble
[55,56], who observed that if we keep the phase spaceΓ of quantum mechanics, along with
the Fubini–Study metric and the associated symplectic structure, but extend the category
of observables to include more general functions onΓ , then the corresponding nonlin-
ear Schrödinger dynamics can still be expressed in Hamiltonian form, i.e.,1

2~Ωab dxb =
∇aH dt . HereH(x) represents a general nonlinear functional of the wave function, not
necessarily the expectation of a linear operator. The peculiar status of such functions in
linear quantum mechanics was pointed out by Mielnik [63], who remarks, ‘. . . in the or-
thodox theory only the quadratic forms are observables: the other functions. . . though they
can be experimentally determined, are not statistical averages of any quantum mechanical
experiment’.

An example of an evolution generated by a nonlinear observable is given by the Newton–
Schrödinger equation. Consider a quantum system of self-gravitating particles, described by
the Schrödinger equation inR3 with a potentialφ(x), as described earlier, whereφ(x) is the
gravitational potential due to the probable mass distribution of the quantum system, given
by the Poisson equation∇2φ(x) = 4πmp(x), wherep(x) = ψ̄(x)ψ(x)/

∫
ψ̄(x)ψ(x)d3x.

Because the potential depends on the wave functionψ(x), the resulting Schrödinger equation
is nonlinear. As another example of nonlinear dynamics we might envisage a modification
of the Schrödinger equation that would tend to drive an initially entangled system towards
a state of disentanglement.

The general features of phase space based nonlinear quantum dynamics have been
studied by a number of authors (e.g., [3,42,46,51,52,57,64,65,73,74,78,95–97]). We also
draw attention to the work of Bialynicki-Birula and Mycielski [16]. It is surprising how
naturally geometric quantum mechanics can be adapted to so many aspects of the non-
linear regime. This suggests that the geometric approach may eventually be useful in
solving some of the key open problems in quantum theory, e.g., a clear understanding
of the process of state reduction and a proper integration of the theory with gravitation
[13,39,98].
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